cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377269 G.f. A(x) satisfies A(x) = (1 - 9*x*A(x))^(2/3).

Original entry on oeis.org

1, -6, 27, -90, 189, 0, -1782, 6318, 0, -90882, 360126, 0, -5985819, 24931800, 0, -446371074, 1912892355, 0, -35840971530, 156454458930, 0, -3022929941616, 13367712796110, 0, -264079216747476, 1179032268616902, 0, -23685874363658232, 106533987128598645, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A377269[n_] := 9^n*Binomial[(n - 5)/3, n]/(n + 1);
    Array[A377269, 35, 0] (* Paolo Xausa, Aug 05 2025 *)
  • PARI
    a(n) = 9^n*binomial(n/3-5/3, n)/(n+1);

Formula

G.f.: (1/x) * Series_Reversion( x/(1-9*x)^(2/3) ).
a(n) = 9^n * binomial(n/3 - 5/3,n)/(n+1).
From Seiichi Manyama, Jun 22 2025: (Start)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^(1/2)).
a(3*n+2) = 0 for n > 0. (End)
E.g.f.: (27*x^2 + 2*hypergeom([-2/3, 5/6], [1/3, 2/3, 2/3, 1], 4*x^3) - 12*x*hypergeom([-1/3, 7/6], [2/3, 1, 4/3, 4/3], 4*x^3))/2. - Stefano Spezia, Jun 22 2025
D-finite with recurrence n*(n-1)*a(n) -54*(2*n-1)*(n-5)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A386416 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^8)^(1/3).

Original entry on oeis.org

1, 3, 63, 1881, 65610, 2499336, 100777122, 4228144596, 182674383705, 8072369224920, 363154406671485, 16576444298006658, 765806677899249168, 35739548618003938440, 1682429522012566325460, 79793991407758199002740, 3809208342822290233767522, 182890356905449116974950200
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A386416[n_] := 9^n*Binomial[(8*n + 1)/3, n]/(8*n + 1);
    Array[A386416, 20, 0] (* Paolo Xausa, Aug 01 2025 *)
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = 9^n*apr(n, 8/3, 1/3);

Formula

a(n) = 9^n * binomial((8*n+1)/3,n)/(8*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^13).
D-finite with recurrence 5*n*(n-1)*(n-2)*(5*n-8)*(5*n-11)*(5*n+1)*(5*n-2)*a(n) -3456*(8*n-11)*(8*n-5)*(4*n-1)*(8*n-23)*(2*n-5)*(8*n-17)*(4*n-7)*a(n-3)=0. - R. J. Mathar, Jul 30 2025
Showing 1-2 of 2 results.