cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377325 E.g.f. satisfies A(x) = 1 - log(1 - x*A(x))/A(x).

Original entry on oeis.org

1, 1, 1, 5, 28, 244, 2566, 33438, 508544, 8926944, 176989488, 3917823216, 95719041408, 2559130965312, 74312569125744, 2329169772108528, 78371469374088960, 2817744760964392704, 107807187260426164992, 4373419962377871956736, 187507942522161269068800
Offset: 0

Views

Author

Seiichi Manyama, Oct 24 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, (n+1)\2, (n-k)!/(n-2*k+1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..floor((n+1)/2)} (n-k)!/(n-2*k+1)! * |Stirling1(n,k)|.

A377327 E.g.f. satisfies A(x) = 1 - A(x)^2 * log(1 - x*A(x)^3).

Original entry on oeis.org

1, 1, 11, 251, 8858, 425534, 25928068, 1916213928, 166580610504, 16657218047328, 1883646389742624, 237695994684785592, 33113333472295201536, 5047818696187818951984, 835818979837614364874496, 149383091745519898076484480, 28663410267058615074689247360, 5877004345535507714104006175616
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (3*n+2*k)!/(3*n+k+1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (3*n+2*k)!/(3*n+k+1)! * |Stirling1(n,k)|.

A377350 E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x)^3.

Original entry on oeis.org

1, 1, 1, 11, 108, 1584, 29808, 674988, 18091944, 557844408, 19468760904, 758698622472, 32653135227936, 1538316755200224, 78737559447563136, 4350956519444451840, 258163046132873143680, 16370486288763937324416, 1104824513292622360789248, 79068747951669626322531840
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, (3*n+1)\4, (3*n-3*k)!/(3*n-4*k+1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..floor((3*n+1)/4)} (3*n-3*k)!/(3*n-4*k+1)! * |Stirling1(n,k)|.
Showing 1-3 of 3 results.