A377323
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x).
Original entry on oeis.org
1, 1, 5, 53, 884, 20234, 589834, 20903700, 872660256, 41944510752, 2281437791448, 138539360885760, 9290720296262976, 681965664411820944, 54384461861952738528, 4682101594725064872768, 432815761314471190599936, 42757813607285233998385920, 4495579313771176952867958528
Offset: 0
-
a(n) = sum(k=0, n, (3*n-k)!/(3*n-2*k+1)!*abs(stirling(n, k, 1)));
A377349
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^2)/A(x)^2.
Original entry on oeis.org
1, 1, 1, 8, 62, 744, 11102, 201704, 4323720, 106591584, 2974873656, 92674125840, 3188299718496, 120053825169888, 4911082489042992, 216879763758962688, 10283600782413709056, 521088305671611058176, 28101278301136842204288, 1606968565080853531472640
Offset: 0
-
a(n) = sum(k=0, (2*n+1)\3, (2*n-2*k)!/(2*n-3*k+1)!*abs(stirling(n, k, 1)));
A377350
E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x)^3.
Original entry on oeis.org
1, 1, 1, 11, 108, 1584, 29808, 674988, 18091944, 557844408, 19468760904, 758698622472, 32653135227936, 1538316755200224, 78737559447563136, 4350956519444451840, 258163046132873143680, 16370486288763937324416, 1104824513292622360789248, 79068747951669626322531840
Offset: 0
-
a(n) = sum(k=0, (3*n+1)\4, (3*n-3*k)!/(3*n-4*k+1)!*abs(stirling(n, k, 1)));
A377358
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x))/A(x) )^2.
Original entry on oeis.org
1, 2, 4, 22, 194, 2268, 34272, 624804, 13432120, 332078160, 9286572624, 289821031344, 9985648515504, 376489542984384, 15418392593403360, 681562973789926560, 32345053760113660800, 1640243700728870131200, 88516191520113318169344, 5064936155664187593030912
Offset: 0
-
a(n) = 2*sum(k=0, (2*n+2)\3, (2*n-2*k+1)!/(2*n-3*k+2)!*abs(stirling(n, k, 1)));
A377359
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x))/A(x) )^3.
Original entry on oeis.org
1, 3, 9, 57, 642, 9402, 177198, 4051338, 108926520, 3371293704, 118000461528, 4609447152120, 198791258476176, 9381618706074768, 480921576177145392, 26610634173004959312, 1580792845661466884352, 100345182367660427554560, 6778517964127816222982016
Offset: 0
-
a(n) = 3*sum(k=0, (3*n+3)\4, (3*n-3*k+2)!/(3*n-4*k+3)!*abs(stirling(n, k, 1)));
Showing 1-5 of 5 results.