A377366 Rectangular array by antidiagonals: R(m,n) = least k such that 2n*prime(m)^k - 1 is prime.
1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 2, 4, 2, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 6, 2, 1, 1, 1, 2, 1, 2, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 4, 10, 4, 6, 2, 1, 2, 1
Offset: 1
Examples
Corner: 1 1 1 2 1 1 4 1 2 2 1 1 2 3 1 2 1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 3 4 1 1 2 3 1 2 1 1 2 1 2 4 1 1 8 1 1 4 1 1 2 1 1 1 3 1 1 2 1 1 2 2 1 2 1 1 2 1 4 1 1 1 3 18 1 2 1 2 2 1 2 1 1 10 1 1 1 2 1 2 6 1 2 2 1 1 2 2 4 1 4 2 1 3 7 1 4 1 8 1 1 1 1 6 6 1 2 3 1 1 1 11 1 6 1 6 5 1 2 1 1 2 4 7 1 2 1 2 1 3 4 1 3 1 10 1 1 2 1 2 6 2 1 2 5 8 2 1 2 1 1 1 1 1 1 9 1 2 1 1 2 3 2 1 3 4 1 3 14 1 1 2 1 8 7 2 1 1 3 2 1 1 1 4 2 3 1 1 2 14 7 1 6 2 1 2 1 1 1 1 1 1 1 2 7 3 1 4 3 1 3 4 1 1 1 2 2 1 3 1 2 1 7 8 1 1 1 1 1 8 15 1 2 4 1 9 4 1 1 2 1 1 2
Programs
-
Mathematica
f[m_, n_, k_] := 2 n*Prime[m]^k - 1; s[m_, n_] := Select[Range[20], PrimeQ[f[m, n, #]] &, 1] u[m_] := Flatten[Table[s[m, n], {n, 1, 60}]] Column[Table[Take[u[m], 16], {m, 1, 16}]] r[m_] := Take[u[m], 12]; w[m_, n_] := r[m][[n]]; Table[w[m, n], {m, 1, 16}, {n, 1, 12}] (* array *) Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)