A377444 a(n) is the smallest integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^3, where 0 < x <= y <= z has exactly n integer solutions.
6, 18, 54, 87, 108, 216, 174, 348, 396, 324, 696, 864, 492, 1080, 984, 1728, 1584, 1296, 2160, 1440, 3312, 3132, 2880, 2592, 4176, 4230, 6624, 3960, 5184, 6264, 4320, 5760, 6480, 7200, 10200, 7920, 9936, 5940, 8640, 12060, 11520, 9900, 14256, 14400, 16560, 14760, 15660, 22140
Offset: 1
Examples
a(2)=18, because 18^3 = 9^3 + 12^3 + 15^3 = 2^3 + 12^3 + 16^3 and no integer less than 18 has 2 solutions.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..120 (terms 1..66 from Zhining Yang)
Crossrefs
Cf. A316359.
Programs
-
Mathematica
a = Table[SelectFirst[Table[{k, Length@Select[PowersRepresentations[k^3, 3, 3], #[[1]] > 0 &]}, {k, 3, 500, 3}], #[[2]] == k &], {k, 10}]
-
Python
from itertools import count from sympy.solvers.diophantine.diophantine import power_representation def A377444(n): return next(filter(lambda k:len(list(power_representation(k**3,3,3)))==n,count(1))) # Chai Wah Wu, Nov 19 2024
Comments