cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A383877 a(n) is the smallest integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^3, where 0 < x < y < z < w has exactly n integer solutions, or 0 if there is no such k.

Original entry on oeis.org

14, 13, 55, 26, 52, 63, 70, 66, 56, 104, 102, 143, 161, 91, 117, 112, 78, 236, 180, 217, 198, 192, 140, 292, 216, 259, 156, 196, 344, 168, 210, 264, 325, 252, 406, 360, 380, 402, 315, 338, 234, 308, 351, 182, 396, 408, 399, 432, 441, 312, 474, 636, 513, 273, 336, 476, 618, 666
Offset: 1

Views

Author

Zhining Yang, May 13 2025

Keywords

Comments

The largest term for k<=10000 is a(3569)=9828.
Conjecture: a(n) != 0 for all n.

Examples

			a(3)=55, because 55^3 = 7^3 + 24^3 + 38^3 + 46^3 = 7^3 + 12^3 + 34^3 + 50^3 = 17^3 + 19^3 + 28^3 + 51^3 and no integer less than 55 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    s=Table[{k,Length@Select[PowersRepresentations[k^3,4,3],0<#[[1]]<#[[2]]<#[[3]]<#[[4]]&]},{k,100}];
    a=Table[SelectFirst[s,#[[2]]==k&],{k,9}][[All,1]]

A385354 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^2, where 0 < x < y < z has exactly n integer solutions.

Original entry on oeis.org

6, 188, 768, 1728, 2640, 21120, 42336, 13824, 71280, 5832, 80352, 74088, 425088, 421875, 1058400, 110592, 287496, 46656
Offset: 1

Views

Author

Zhining Yang, Jun 26 2025

Keywords

Comments

a(19) > 2000000, a(20) = 216000, a(22) = 884736.

Examples

			a(3)=768, because 768^2 = 54^3 + 59^3 + 61^3 = 40^3 + 62^3 + 66^3 = 24^3 + 40^3 + 80^3 and no integer less than 768 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^2, 3, 3],
         0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 2000}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 4}][[All, 1]]

Extensions

a(18) from Chai Wah Wu, Jul 05 2025

A385566 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^6, where 0 < x < y < z has exactly n integer solutions.

Original entry on oeis.org

3, 6, 16, 12, 27, 63, 38, 24, 94, 18, 123, 42, 93, 75, 141, 48, 66, 36, 153, 60, 140, 96, 279, 114, 200, 138, 410, 174, 72, 126, 186, 168, 204, 150, 108, 426, 132, 220, 418, 246, 498, 736, 144, 120, 294, 306, 210, 666, 282, 378, 252, 770, 216, 460, 462, 534, 180
Offset: 1

Views

Author

Zhining Yang, Jul 03 2025

Keywords

Examples

			a(3)=16, because 16^6 = 9^3 + 58^3 + 255^3 = 9^3 + 183^3 + 220^3 = 22^3 + 57^3 + 255^3  and no integer less than 16 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^6, 3, 3], 0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 30}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 5}][[All, 1]]

Extensions

a(41)-a(57) from Chai Wah Wu, Jul 07 2025

A377372 a(n) is the smallest prime p such that the Diophantine equation x^3 + y^3 + z^3 = p^3, where 0 < x <= y <= z has exactly n positive integer solutions.

Original entry on oeis.org

2, 19, 41, 479, 1031, 1181, 577, 2999, 10711, 29033, 24919, 49069, 60919, 169019, 209563, 254993, 337537
Offset: 0

Views

Author

Zhining Yang, Dec 28 2024

Keywords

Examples

			a(3)=479, because 479^3 = 47^3 + 350^3 + 406^3 = 109^3 + 293^3 + 437^3 = 256^3 + 311^3 + 398^3 and no prime less than 479 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    a = Table[SelectFirst[Table[{p,Length@Select[PowersRepresentations[p^3, 3, 3], #[[1]] > 0 &]}, {p, Prime@Range@200}], #[[2]] == k &], {k, 0, 6}]

Extensions

a(11) from Jinyuan Wang, May 31 2025
a(12) from Chai Wah Wu, Jun 03 2025
a(13)-a(15) from Chai Wah Wu, Jun 04 2025
a(16) from Chai Wah Wu, Jun 10 2025

A385565 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^4, where 0 < x < y < z has exactly n integer solutions.

Original entry on oeis.org

11, 21, 64, 144, 330, 846, 342, 252, 1331, 1008, 720, 1890, 3780, 729, 4200, 2016, 1000, 216, 6300, 8352, 10800, 12312, 8568, 19440, 8280, 9576, 21204
Offset: 1

Views

Author

Zhining Yang, Jul 03 2025

Keywords

Comments

a(13) and a(15) not found up to k = 3300, a(14) = 729, a(16) = 2016, a(17) = 1000, a(18) = 216.

Examples

			a(3)=64, because 64^4 = 9^3 + 58^3 + 255^3 = 9^3 + 183^3 + 220^3 = 22^3 + 57^3 + 255^3 and no integer less than 64 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^4, 3, 3],
          0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 400}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 5}][[All, 1]]

Extensions

a(13), a(15), a(19)-a(21) from Chai Wah Wu, Jul 08 2025
a(22)-a(27) from Chai Wah Wu, Jul 18 2025

A385409 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^2, where 0 < x < y < z < w has exactly n integer solutions.

Original entry on oeis.org

10, 42, 39, 153, 126, 276, 273, 312, 315, 476, 588, 336, 546, 777, 1053, 756, 1216, 1386, 1560, 1134, 1323, 1488, 1365, 1368, 1344, 1596, 2366, 2496, 2988, 1680, 2548, 1736, 2184, 3003, 3720, 2520, 3185, 3552, 2268, 3564, 4095, 3213, 4578, 4392, 5208, 4004, 4599, 5733
Offset: 1

Views

Author

Zhining Yang, Jun 27 2025

Keywords

Comments

Conjecture: a(n) exists for all n.

Examples

			a(4)=153, because 153^2 = 5^3 + 15^3 + 21^3 + 22^3 = 2^3 + 7^3 + 15^3 + 27^3 = 6^3 + 8^3 + 9^3 + 28^3 = 1^3 + 5^3 + 11^3 + 28^3 and no integer less than 153 has 4 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^2, 4, 3],
          0 < #[[1]] < #[[2]] < #[[3]] < #[[4]] &]}, {k, 500}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 10}][[All, 1]]
Showing 1-6 of 6 results.