cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377446 E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x))^3.

Original entry on oeis.org

1, 3, 33, 642, 18312, 694242, 32960910, 1883757264, 126015816624, 9664169177136, 836144408644560, 80584887639709296, 8562470160920850144, 994509363776066618256, 125361725299037966371824, 17045520282440541500805504, 2486876242354800277464657792, 387527092638347603108279296512
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n, (4*k+2)!/(3*k+3)!*abs(stirling(n, k, 1)));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A377447.
a(n) = 3 * Sum_{k=0..n} (4*k+2)!/(3*k+3)! * |Stirling1(n,k)|.

A377448 E.g.f. satisfies A(x) = 1/(1 + A(x)^4 * log(1 - x)).

Original entry on oeis.org

1, 1, 11, 242, 8216, 379874, 22286230, 1586307120, 132837129240, 12796759555080, 1394232748385400, 169520552541195360, 22755571384758552000, 3342628991206830087840, 533345016648993065361120, 91858353520083403370288640, 16985334194077245970016972160, 3356121850436121636865113624960
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (5*k)!/(4*k+1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (5*k)!/(4*k+1)! * |Stirling1(n,k)|.
Showing 1-2 of 2 results.