cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377445 E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x))^2.

Original entry on oeis.org

1, 2, 16, 226, 4678, 128728, 4437416, 184176816, 8949477600, 498611374704, 31343763192144, 2194986671431200, 169478318264408832, 14304849733469090976, 1310439414650613267552, 129495512412669053694720, 13731040497246647099309568, 1555129289690056322821075968
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2*Sum[(3*k+1)!/(2*k+2)! * Abs[StirlingS1[n,k]], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2025 *)
  • PARI
    a(n) = 2*sum(k=0, n, (3*k+1)!/(2*k+2)!*abs(stirling(n, k, 1)));

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A367158.
a(n) = 2 * Sum_{k=0..n} (3*k+1)!/(2*k+2)! * |Stirling1(n,k)|.
a(n) ~ 27 * n^(n-1) / (2^(5/2) * (exp(4/27) - 1)^(n - 1/2) * exp(23*n/27)). - Vaclav Kotesovec, Aug 27 2025

A377449 E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x))^4.

Original entry on oeis.org

1, 4, 56, 1388, 50444, 2436176, 147308248, 10720410984, 913099165080, 89150817350880, 9819313409197632, 1204676163038931744, 162935364815509750368, 24088567621306193343360, 3864931159784777490964608, 668886871993798772730203136, 124209455281616641852564586496
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4*sum(k=0, n, (5*k+3)!/(4*k+4)!*abs(stirling(n, k, 1)));

Formula

E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377448.
a(n) = 4 * Sum_{k=0..n} (5*k+3)!/(4*k+4)! * |Stirling1(n,k)|.

A377693 E.g.f. satisfies A(x) = (1 - log(1 - x) * A(x))^3.

Original entry on oeis.org

1, 3, 27, 408, 8814, 249702, 8789946, 370639896, 18233312640, 1025931258264, 65016004033944, 4583861319427200, 355955157532869552, 30192068409536580336, 2777615578746538933392, 275502517287785484635520, 29308962522270448504338048, 3329136621436554585165282048
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n, (3*k+2)!/(2*k+3)!*abs(stirling(n, k, 1)));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A367158.
a(n) = 3 * Sum_{k=0..n} (3*k+2)!/(2*k+3)! * |Stirling1(n,k)|.
Showing 1-3 of 3 results.