A377446
E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x))^3.
Original entry on oeis.org
1, 3, 33, 642, 18312, 694242, 32960910, 1883757264, 126015816624, 9664169177136, 836144408644560, 80584887639709296, 8562470160920850144, 994509363776066618256, 125361725299037966371824, 17045520282440541500805504, 2486876242354800277464657792, 387527092638347603108279296512
Offset: 0
-
a(n) = 3*sum(k=0, n, (4*k+2)!/(3*k+3)!*abs(stirling(n, k, 1)));
A377449
E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x))^4.
Original entry on oeis.org
1, 4, 56, 1388, 50444, 2436176, 147308248, 10720410984, 913099165080, 89150817350880, 9819313409197632, 1204676163038931744, 162935364815509750368, 24088567621306193343360, 3864931159784777490964608, 668886871993798772730203136, 124209455281616641852564586496
Offset: 0
-
a(n) = 4*sum(k=0, n, (5*k+3)!/(4*k+4)!*abs(stirling(n, k, 1)));
A377692
E.g.f. satisfies A(x) = (1 - log(1 - x) * A(x))^2.
Original entry on oeis.org
1, 2, 12, 118, 1634, 29408, 654040, 17362056, 536410200, 18922946928, 750902659200, 33118793900784, 1607673329621712, 85192554602094912, 4894219487974911552, 303021216528999244416, 20116223556200658052992, 1425479651299747192856832, 107400336067263661850548224
Offset: 0
-
a(n) = 2*sum(k=0, n, (2*k+1)!/(k+2)!*abs(stirling(n, k, 1)));
Showing 1-3 of 3 results.