A377496 Smallest prime p such that x^n - x - 1 splits modulo p.
5, 23, 83, 1973, 1151, 20959, 40609, 1627853, 57323489, 1616436271, 6814548563, 217642750067
Offset: 2
Examples
a(4) = 83 because x^4 - x - 1 has an irreducible factor of degree > 1 modulo all primes less than 83, but splits as (x + 3)(x + 7)(x + 14)(x + 59) modulo 83.
Links
- Ernst S. Selmer, On the irreducibility of certain trinomials, Mathematica Scandinavica 4 (1956), 287-302.
Crossrefs
Cf. A376950 (x^n + x + 1).
Programs
-
Mathematica
a[n_] := Module[{i}, For[i = 1, True, i++, If[Total[Last /@ Rest[FactorList[x^n - x - 1, Modulus -> Prime[i]]]] == n, Return[Prime[i]]; ] ] ]; a /@ Range[2, 8]
Comments