cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377530 Expansion of e.g.f. 1/(1 - x * exp(x))^3.

Original entry on oeis.org

1, 3, 18, 141, 1380, 16095, 217458, 3335745, 57225528, 1085066523, 22526087070, 508042140573, 12367076890644, 323130848000727, 9018976230237834, 267789942962863065, 8427492557547704688, 280194087519310655667, 9813332205452943323190, 361109786425470021564021
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=19; CoefficientList[Series[1/(1 - x * Exp[x])^3,{x,0,nmax}],x]Range[0,nmax]! (* Stefano Spezia, Feb 05 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(k+2, 2)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(k+2,2)/(n-k)!.
a(n) ~ n! * n^2 / (2 * (1+LambertW(1))^3 * LambertW(1)^n). - Vaclav Kotesovec, Oct 31 2024

A377531 Expansion of e.g.f. 1/(1 - x^2 * exp(x))^2.

Original entry on oeis.org

1, 0, 4, 12, 96, 760, 7260, 80724, 1008112, 14079888, 216881460, 3652767580, 66773963784, 1316433381432, 27840054610732, 628626642921060, 15093709672205280, 383989133237230624, 10317497504580922212, 291958800400148127660, 8678485827979443326200
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, (k+1)*k^(n-2*k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (k+1) * k^(n-2*k)/(n-2*k)!.
a(n) ~ n! * n / ((1 + LambertW(1/2))^2 * 2^(n+2) * LambertW(1/2)^n). - Vaclav Kotesovec, Oct 31 2024
Showing 1-2 of 2 results.