cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377530 Expansion of e.g.f. 1/(1 - x * exp(x))^3.

Original entry on oeis.org

1, 3, 18, 141, 1380, 16095, 217458, 3335745, 57225528, 1085066523, 22526087070, 508042140573, 12367076890644, 323130848000727, 9018976230237834, 267789942962863065, 8427492557547704688, 280194087519310655667, 9813332205452943323190, 361109786425470021564021
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=19; CoefficientList[Series[1/(1 - x * Exp[x])^3,{x,0,nmax}],x]Range[0,nmax]! (* Stefano Spezia, Feb 05 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(k+2, 2)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(k+2,2)/(n-k)!.
a(n) ~ n! * n^2 / (2 * (1+LambertW(1))^3 * LambertW(1)^n). - Vaclav Kotesovec, Oct 31 2024

A377533 Expansion of e.g.f. 1/(1 - x * exp(x^2))^2.

Original entry on oeis.org

1, 2, 6, 36, 264, 2280, 23760, 283920, 3830400, 57728160, 959212800, 17424348480, 343508014080, 7302340805760, 166504724305920, 4053311579116800, 104916366780825600, 2877212787562713600, 83332056329006284800, 2541707625791324390400, 81432631127484628992000
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k+1)*(n-2*k)^k/k!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k+1) * (n-2*k)^k/k!.
a(n) ~ n! * n * 2^(n/2) / ((1+LambertW(2))^2 * LambertW(2)^(n/2)). - Vaclav Kotesovec, Oct 31 2024
Showing 1-2 of 2 results.