cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377537 a(n) is the number of positive integers that have n prime factors and these are all <= n.

Original entry on oeis.org

0, 1, 4, 5, 21, 28, 120, 165, 220, 286, 1365, 1820, 8568, 11628, 15504, 20349, 100947, 134596, 657800, 888030, 1184040, 1560780, 7888725, 10518300, 13884156, 18156204, 23535820, 30260340, 163011640, 211915132, 1121099408, 1471442973, 1917334783, 2481256778, 3190187286
Offset: 1

Views

Author

Felix Huber, Nov 04 2024

Keywords

Examples

			a(2) = 1 because 1 positive integer has 2 prime factors <= 2: 4 = 2*2.
a(3) = 4 because 4 positive integers have 3 prime factors <= 3: 8 = 2*2*2, 12 = 2*2*3, 18 = 2*3*3, 27 = 3*3*3.
a(4) = 5 because 5 positive integers have 4 prime factors <= 4: 16 = 2*2*2*2, 24 = 2*2*2*3, 36 = 2*2*3*3, 54 = 2*3*3*3, 81 = 3*3*3*3.
		

Crossrefs

Programs

  • Maple
    A377537:=n->binomial(NumberTheory:-pi(n)+n-1,n);seq(A377537(n),n=1..35);
  • Mathematica
    a[n_]:= Binomial[PrimePi[n] + n - 1, n]; Array[a,35] (* Stefano Spezia, Nov 04 2024 *)
  • PARI
    a(n) = binomial(primepi(n) + n - 1, n); \\ Michel Marcus, Nov 05 2024
    
  • Python
    from math import comb
    from sympy import primepi
    def A377537(n): return comb(primepi(n)+n-1,n) # Chai Wah Wu, Nov 12 2024

Formula

a(n) = binomial(pi(n) + n - 1, n) where pi = A000720.