cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377683 Expansion of e.g.f. (1 - x * log(1 - x))^3.

Original entry on oeis.org

1, 0, 6, 9, 96, 450, 3132, 22680, 179904, 1578528, 15282000, 162304560, 1879227072, 23579281440, 318874800384, 4625170411680, 71640771563520, 1180394962790400, 20616532017767424, 380509312545031680, 7400308896979660800, 151271976281858611200, 3242509236999683481600
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, k!*binomial(3, k)*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k! * binomial(3,k) * |Stirling1(n-k,k)|/(n-k)!.

A377684 Expansion of e.g.f. (1 - x * log(1 - x))^4.

Original entry on oeis.org

1, 0, 8, 12, 176, 840, 7416, 58800, 529728, 5152896, 54070560, 612342720, 7472424384, 97979207040, 1375839795456, 20619488373120, 328716465177600, 5556948993792000, 99324048442208256, 1871986425192990720, 37110785352536724480, 772059856808638218240, 16820447458491885035520
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, k!*binomial(4, k)*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k! * binomial(4,k) * |Stirling1(n-k,k)|/(n-k)!.
Showing 1-2 of 2 results.