cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377682 Expansion of e.g.f. (1 - x * log(1 - x))^2.

Original entry on oeis.org

1, 0, 4, 6, 40, 180, 948, 5880, 42208, 344736, 3158640, 32091840, 358107264, 4353972480, 57290002560, 811116633600, 12295029657600, 198666240675840, 3408788192947200, 61898371424870400, 1185883197069312000, 23905764186329088000, 505813884019270041600
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, k!*binomial(2, k)*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k! * binomial(2,k) * |Stirling1(n-k,k)|/(n-k)!.

A377684 Expansion of e.g.f. (1 - x * log(1 - x))^4.

Original entry on oeis.org

1, 0, 8, 12, 176, 840, 7416, 58800, 529728, 5152896, 54070560, 612342720, 7472424384, 97979207040, 1375839795456, 20619488373120, 328716465177600, 5556948993792000, 99324048442208256, 1871986425192990720, 37110785352536724480, 772059856808638218240, 16820447458491885035520
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, k!*binomial(4, k)*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k! * binomial(4,k) * |Stirling1(n-k,k)|/(n-k)!.
Showing 1-2 of 2 results.