cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377790 Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 - 3*log(1-x)) ).

Original entry on oeis.org

1, 3, 21, 249, 4302, 98982, 2860686, 99779418, 4081683744, 191696903424, 10168315038360, 601321398385320, 39230551252853424, 2799199551778309872, 216856533870111053520, 18127987493141612555280, 1626479163148212406506240, 155902932291162161594016000
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x/(1-3*log(1-x)))/x))
    
  • PARI
    a(n) = n!*sum(k=0, n, 3^k*abs(stirling(n, k, 1))/(n-k+1)!);

Formula

a(n) = n! * Sum_{k=0..n} 3^k * |Stirling1(n,k)|/(n-k+1)!.

A377737 Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 - log(1-2*x) / 2) ).

Original entry on oeis.org

1, 1, 4, 32, 392, 6504, 136464, 3466224, 103425664, 3546396288, 137423600640, 5939224680960, 283254408582144, 14777481937449984, 837175325044101120, 51182161648716349440, 3358765321328869539840, 235492308312669671424000, 17568539556367396687183872
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x/(1-log(1-2*x)/2))/x))
    
  • PARI
    a(n) = n!*sum(k=0, n, 2^(n-k)*abs(stirling(n, k, 1))/(n-k+1)!);

Formula

a(n) = n! * Sum_{k=0..n} 2^(n-k) * |Stirling1(n,k)|/(n-k+1)!.
Showing 1-2 of 2 results.