A377793 a(n) is the number of squarefree composite k with lpf(k) = prime(n) such that m <= Omega(k), where lpf = A020639, m = floor(log k / log lpf(k)), and Omega = A001222.
1, 2, 9, 21, 128, 194, 713, 874, 2276, 11898, 12522, 52469, 103824, 99930, 173685, 534743, 1608864, 1438340, 3894769, 5881191, 5008669, 11802600, 16274460, 36220208, 132526590, 178177142
Offset: 1
Examples
In A377713, there are terms k with smallest prime factor prime(n) as follows: Prime(n) | a(n) | k such that floor(log_lpf(k) k) <= Omega(k) ------------------------------------------------------------------------------- prime(1) = 2 | 1 | 6 prime(2) = 3 | 2 | 15, 27 prime(3) = 5 | 9 | 35, 55, 65, 85, 95, 115, 385, 455, 595 prime(4) = 7 | 21 | 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329, 1001, | | 1309, 1463, 1547, 1729, 1771, 2093, 2233, 2261, 2387 prime(5) = 11 | 128 | 143, 187, 209, ..., 1733303
Programs
-
Mathematica
Table[c = 0; p = Prime[i]; m = p^3; Set[{w, t}, {{p, NextPrime[p]}, False}]; Do[Set[s, Times @@ w]; If[s < m, AppendTo[w, NextPrime@ Last[w] ]; m *= p; c++, If[Length[w] < 3, Break[], w = Append[w[[;; -3]], NextPrime@ w[[-2]] ]; m /= p] ], Infinity]; c, {i, 12}]
Formula
a(n) = length of row n of A377792.
Comments