cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377793 a(n) is the number of squarefree composite k with lpf(k) = prime(n) such that m <= Omega(k), where lpf = A020639, m = floor(log k / log lpf(k)), and Omega = A001222.

Original entry on oeis.org

1, 2, 9, 21, 128, 194, 713, 874, 2276, 11898, 12522, 52469, 103824, 99930, 173685, 534743, 1608864, 1438340, 3894769, 5881191, 5008669, 11802600, 16274460, 36220208, 132526590, 178177142
Offset: 1

Views

Author

Michael De Vlieger, Nov 07 2024

Keywords

Comments

a(n) is the number of terms in A377713 with least prime factor prime(n).

Examples

			In A377713, there are terms k with smallest prime factor prime(n) as follows:
    Prime(n)  | a(n) | k such that floor(log_lpf(k) k) <= Omega(k)
-------------------------------------------------------------------------------
prime(1) =  2 |   1  | 6
prime(2) =  3 |   2  | 15, 27
prime(3) =  5 |   9  | 35, 55, 65, 85, 95, 115, 385, 455, 595
prime(4) =  7 |  21  | 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329, 1001,
              |      | 1309, 1463, 1547, 1729, 1771, 2093, 2233, 2261, 2387
prime(5) = 11 | 128  | 143, 187, 209, ..., 1733303
		

Crossrefs

Programs

  • Mathematica
    Table[c = 0; p = Prime[i]; m = p^3;
      Set[{w, t}, {{p, NextPrime[p]}, False}];
      Do[Set[s, Times @@ w];
        If[s < m,
          AppendTo[w, NextPrime@ Last[w] ]; m *= p; c++,
          If[Length[w] < 3, Break[],
            w = Append[w[[;; -3]], NextPrime@ w[[-2]] ]; m /= p] ],
        Infinity]; c, {i, 12}]

Formula

a(n) = length of row n of A377792.