A377851 Smallest multiplier which can complete the square for n-polygonal numbers, together with a constant offset.
8, 1, 24, 8, 40, 3, 56, 16, 72, 5, 88, 24, 104, 7, 120, 32, 136, 9, 152, 40, 168, 11, 184, 48, 200, 13, 216, 56, 232, 15, 248, 64, 264, 17, 280, 72, 296, 19, 312, 80, 328, 21, 344, 88, 360, 23, 376, 96, 392, 25, 408, 104, 424, 27, 440, 112, 456, 29, 472
Offset: 3
Examples
For n=7, the heptagonal numbers are h(x) = x*(5*x-3)/2 and with multiplier a(7) = 40 and offset A181318(7-4) = 9 become 40*h(x)+9 = (10*x - 3)^2.
Links
- Paolo Xausa, Table of n, a(n) for n = 3..10000
- Wikipedia, Completing the square.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
Crossrefs
Cf. A181318 (offsets).
Programs
-
Mathematica
Table[8*(n - 2)/GCD[n, 4]^2, {n, 3, 100}] (* Paolo Xausa, Dec 07 2024 *)
-
PARI
a(n) = 8*(n-2)/gcd(n,4)^2 \\ Andrew Howroyd, Nov 10 2024
Formula
a(n) = 8*(n-2)/gcd(n,4)^2. - Andrew Howroyd, Nov 10 2024
From Stefano Spezia, Nov 13 2024: (Start)
G.f.: x^3*(8 + x + 24*x^2 + 8*x^3 + 24*x^4 + x^5 + 8*x^6)/(1 - x^4)^2.
E.g.f.: (4 + 32*x + 6*cos(x) + 2*(16*x - 5)*cosh(x) + 3*x*sin(x) + (5*x - 64)*sinh(x))/4. (End)
Comments