cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377858 a(n) = Sum_{k=1..n} tan(k*Pi/(1+2*n))^4.

Original entry on oeis.org

0, 9, 90, 371, 1044, 2365, 4654, 8295, 13736, 21489, 32130, 46299, 64700, 88101, 117334, 153295, 196944, 249305, 311466, 384579, 469860, 568589, 682110, 811831, 959224, 1125825, 1313234, 1523115, 1757196, 2017269, 2305190, 2622879, 2972320, 3355561, 3774714
Offset: 0

Views

Author

Seiichi Manyama, Nov 09 2024

Keywords

References

  • Shigeichi Moriguchi, Kanehisa Udagawa, Shin Hitotsumatsu, "Mathematics Formulas II", Iwanami Shoten, Publishers (1957), p. 14.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,9,90,371,1044},35] (* James C. McMahon, Nov 10 2024 *)
  • PARI
    a(n) = n*(2*n+1)*(4*n^2+6*n-1)/3;
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(x*(9+45*x+11*x^2-x^3)/(1-x)^5))
    
  • Python
    def A377858(n): return n*(n*(n*(n+2<<3)+4)-1)//3 # Chai Wah Wu, Nov 10 2024

Formula

a(n) = n * (2*n+1) * (4*n^2+6*n-1)/3.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: x * (9 + 45*x + 11*x^2 - x^3)/(1 - x)^5.
E.g.f.: exp(x)*x*(27 + 108*x + 64*x^2 + 8*x^3)/3. - Stefano Spezia, Nov 10 2024