A377966
Expansion of e.g.f. (1+x)^2 * exp(x*(1+x)^3).
Original entry on oeis.org
1, 3, 13, 85, 621, 5131, 48553, 500613, 5590105, 67453651, 868300581, 11854859413, 171122864773, 2598083998875, 41331779697601, 687151457132101, 11904595227392433, 214378528158055843, 4004773210169606845, 77459628036613435221, 1548502062887370346141
Offset: 0
-
a(n, s=2, t=3) = n!*sum(k=0, n, binomial(t*k+s, n-k)/k!);
A377955
a(n) = n! * Sum_{k=0..n} binomial(k+3,n-k) / k!.
Original entry on oeis.org
1, 4, 15, 58, 241, 1056, 4879, 23710, 120033, 635356, 3478351, 19796514, 115988305, 703052728, 4372581711, 28022140486, 183804777409, 1238244635700, 8520907808143, 60061024788106, 431735704061361, 3171780156493264, 23730347517489295, 181115025566445678
Offset: 0
A377956
a(n) = n! * Sum_{k=0..n} binomial(k+4,n-k) / k!.
Original entry on oeis.org
1, 5, 23, 103, 473, 2261, 11215, 57863, 309713, 1715653, 9831911, 58058375, 353546473, 2210900693, 14215319903, 93610866151, 632159025185, 4362925851653, 30809311250743, 221958273142823, 1632956199823481, 12238229941781845, 93509510960341103, 726913018468699463
Offset: 0
A377959
Expansion of e.g.f. exp(x - x^2)/(1 - x)^2.
Original entry on oeis.org
1, 3, 9, 31, 141, 831, 5773, 45459, 403161, 3990331, 43544721, 518940423, 6706062949, 93404895351, 1394851282581, 22230473112571, 376610264357553, 6758060929028979, 128047472471583001, 2554547113522500591, 53523844242070603581, 1175091669834676927663
Offset: 0
A377965
Expansion of e.g.f. (1+x)^2 * exp(x*(1+x)^2).
Original entry on oeis.org
1, 3, 11, 55, 309, 1931, 13543, 101991, 828425, 7192819, 66002691, 639830423, 6510397501, 69266297595, 768989536799, 8876171274631, 106301772962193, 1318277355041891, 16892429768517115, 223330116792810999, 3041570471301007301, 42611228176879105003
Offset: 0
-
a(n, s=2, t=2) = n!*sum(k=0, n, binomial(t*k+s, n-k)/k!);
Showing 1-5 of 5 results.