cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377954 a(n) = n! * Sum_{k=0..n} binomial(k+2,n-k) / k!.

Original entry on oeis.org

1, 3, 9, 31, 117, 471, 2053, 9339, 45321, 227467, 1203681, 6556023, 37316029, 217944351, 1321360797, 8201728531, 52577120913, 344433580179, 2321103364921, 15960060854607, 112534486969221, 808555930139623, 5942117054417589, 44446333314841131
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, binomial(k+2, n-k)/k!);

Formula

E.g.f.: (1 + x)^2 * exp(x + x^2).
a(n) = -(n-4)*a(n-1) + 3*(n-1)*a(n-2) + 2*(n-1)*(n-2)*a(n-3) for n > 2.
a(n) = ((n^2-7*n+3)*a(n-1) + 2*(n-1)*(n^2-3*n-1)*a(n-2))/(n^2-5*n+3) for n > 1.
a(n) ~ n^(n/2 + 1) * 2^(n/2 - 3/2) / exp(1/8 - sqrt(n/2) + n/2) * (1 + 157/(48*sqrt(2*n))). - Vaclav Kotesovec, Nov 12 2024

A377956 a(n) = n! * Sum_{k=0..n} binomial(k+4,n-k) / k!.

Original entry on oeis.org

1, 5, 23, 103, 473, 2261, 11215, 57863, 309713, 1715653, 9831911, 58058375, 353546473, 2210900693, 14215319903, 93610866151, 632159025185, 4362925851653, 30809311250743, 221958273142823, 1632956199823481, 12238229941781845, 93509510960341103, 726913018468699463
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, binomial(k+4, n-k)/k!);

Formula

E.g.f.: (1 + x)^4 * exp(x + x^2).
a(n) = -(n-6)*a(n-1) + 3*(n-1)*a(n-2) + 2*(n-1)*(n-2)*a(n-3) for n > 2.

A377960 Expansion of e.g.f. exp(x - x^2)/(1 - x)^3.

Original entry on oeis.org

1, 4, 17, 82, 469, 3176, 24829, 219262, 2157257, 23405644, 277601161, 3572553194, 49576701277, 737902011952, 11725479449909, 198112664861206, 3546412902136849, 67047080265355412, 1334894917247980417, 27917550541234128514, 611874855066753173861, 14024463626236493578744
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, binomial(n-2*k+2, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} binomial(n-2*k+2,n-k) / k!.
a(n) = (n+3)*a(n-1) - 3*(n-1)*a(n-2) + 2*(n-1)*(n-2)*a(n-3) for n > 2.
Showing 1-3 of 3 results.