A377987 Irregular triangle giving on row n all those antiderivatives k of the n-th factorial, for which bigomega(k) > 2.
20, 116, 716, 2512, 5036, 40316, 84672, 176364, 1390500, 1782108, 3628773, 3628796, 10529953, 12258673, 76944384, 5338541473, 8944397353, 11690698969, 1236868096, 1849666112, 3096111708, 1004929973233, 54465962625, 1657198101073, 6791831913289, 1307674367996, 5739085040351, 21522396453889, 63577408859233, 104747513922049, 287711613106993, 626768279186209
Offset: 4
Examples
Row n k such that A003415(k) = n! and A001222(k) > 2. (no solutions for n = 1..3) 4: 20; (20 = 2*2*5, so 20' = 4'*5 + 5'*4 = 4*5 + 1*4 = 24 = 4!) 5: 116; (116 = 2*2*29, so 116' = 4*29 + 1*4 = 120 = 5!) 6: 716; (716 = 2*2*179, so 716' = 4*179 + 1*4 = 720 = 6!) 7: 2512, 5036; 8: 40316; 9: 84672, 176364; (2^6 * 3^3 * 7^2 and 2^2 * 3^3 * 23 * 71) 10: 1390500, 1782108, 3628773, 3628796, 10529953, 12258673; 11: (no solutions) 12: 76944384, 5338541473, 8944397353, 11690698969; 13: 1236868096, 1849666112, 3096111708, 1004929973233; 14: 54465962625, 1657198101073, 6791831913289; 15: 1307674367996, 5739085040351, 21522396453889, 63577408859233, 104747513922049, 287711613106993, 626768279186209; etc. Note that although A003415(9) = 6 = 3!, it is not included in this table as 9 is a semiprime, with A001222(9) = 2.
Programs
-
PARI
\\ Use the programs given in A377987 and A376410. \\ the data needs also to be post-processed (sorted) with \\ sols = sort_solutions_vector(readvec("a_terms_for_A377987_unsorted.txt")); \\ using these functions: sort_solutions_vector(v) = vecsort(v,sort_by_A003415_and_magnitude); sort_by_A003415_and_magnitude(x,y) = { my(s = sign(A003415(x)-A003415(y))); if(!s, sign(x-y), s); };
Comments