cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378114 Number of 3-tuples (p_1, p_2, p_3) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_3 only touches the x-axis at its endpoints.

Original entry on oeis.org

1, 1, 3, 23, 265, 3942, 70395, 1445700, 33188889, 834702890, 22656163450, 656075013591, 20085981787831, 645418018740113, 21637970282382744, 753157297564682541, 27105935164769925549, 1005184072184843625837, 38295251586474334236780, 1495061191885030011433707
Offset: 0

Views

Author

Alois P. Heinz, Nov 16 2024

Keywords

Examples

			a(2) = 3:
               /\            /\   /\       /\   /\   /\
   (/\/\,/\/\,/  \)   (/\/\,/  \,/  \)   (/  \,/  \,/  \)  .
The a(3) = 23 3-tuples can be encoded as 114, 115, 124, 125, 134, 135, 144, 145, 155, 224, 225, 244, 245, 255, 334, 335, 344, 345, 355, 444, 445, 455, 555, where the digits represent the following Dyck paths:
  1        2        3        4        5 /\
            /\         /\     /\/\     /  \
  /\/\/\   /  \/\   /\/  \   /    \   /    \ .
		

Crossrefs

Column k=3 of A378112.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
          (2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
        end:
    A:= proc(n, k) option remember;
          b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
        end:
    a:= n-> A(n, 3):
    seq(a(n), n=0..20);

Formula

INVERTi transform of A006149.