A378114 Number of 3-tuples (p_1, p_2, p_3) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_3 only touches the x-axis at its endpoints.
1, 1, 3, 23, 265, 3942, 70395, 1445700, 33188889, 834702890, 22656163450, 656075013591, 20085981787831, 645418018740113, 21637970282382744, 753157297564682541, 27105935164769925549, 1005184072184843625837, 38295251586474334236780, 1495061191885030011433707
Offset: 0
Keywords
Examples
a(2) = 3: /\ /\ /\ /\ /\ /\ (/\/\,/\/\,/ \) (/\/\,/ \,/ \) (/ \,/ \,/ \) . The a(3) = 23 3-tuples can be encoded as 114, 115, 124, 125, 134, 135, 144, 145, 155, 224, 225, 244, 245, 255, 334, 335, 344, 345, 355, 444, 445, 455, 555, where the digits represent the following Dyck paths: 1 2 3 4 5 /\ /\ /\ /\/\ / \ /\/\/\ / \/\ /\/ \ / \ / \ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..567
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul( (2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k)) end: A:= proc(n, k) option remember; b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1) end: a:= n-> A(n, 3): seq(a(n), n=0..20);
Formula
INVERTi transform of A006149.