cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A378112 Number A(n,k) of k-tuples (p_1, p_2, ..., p_k) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_k only touches the x-axis at its endpoints; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 3, 9, 5, 0, 1, 1, 4, 23, 55, 14, 0, 1, 1, 5, 46, 265, 400, 42, 0, 1, 1, 6, 80, 880, 3942, 3266, 132, 0, 1, 1, 7, 127, 2347, 23695, 70395, 28999, 429, 0, 1, 1, 8, 189, 5403, 105554, 824229, 1445700, 274537, 1430, 0
Offset: 0

Views

Author

Alois P. Heinz, Nov 16 2024

Keywords

Examples

			A(3,2) = 9:
                             /\
           /\/\             /  \      /\     /\/\
  (/\/\/\,/    \)  (/\/\/\,/    \)  (/  \/\,/    \)
.
            /\                                /\
    /\     /  \        /\   /\/\        /\   /  \
  (/  \/\,/    \)  (/\/  \,/    \)  (/\/  \,/    \)
.
                             /\        /\     /\
    /\/\   /\/\      /\/\   /  \      /  \   /  \
  (/    \,/    \)  (/    \,/    \)  (/    \,/    \)
.
Square array A(n,k) begins:
  1,  1,    1,     1,      1,       1,        1, ...
  1,  1,    1,     1,      1,       1,        1, ...
  0,  1,    2,     3,      4,       5,        6, ...
  0,  2,    9,    23,     46,      80,      127, ...
  0,  5,   55,   265,    880,    2347,     5403, ...
  0, 14,  400,  3942,  23695,  105554,   382508, ...
  0, 42, 3266, 70395, 824229, 6601728, 40446551, ...
		

Crossrefs

Columns k=0-3 give: A019590(n+1), A120588, A355281, A378114.
Rows n=0+1,2,3 give: A000012, A001477, A101986.
Main diagonal gives A378113.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
          (2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
        end:
    A:= proc(n, k) option remember;
          b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

Column k is INVERTi transform of row k of A368025.
Showing 1-1 of 1 results.