A378195 Number of 2-colorings of length n without an arithmetic progression of length 3.
1, 2, 4, 6, 10, 14, 20, 16, 6, 0
Offset: 0
Keywords
Examples
a(3) = 6 since we have [0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0].
Programs
-
Mathematica
HasEquallySpacedKBits[bits_, k_] := If[k == 1, True, Module[{n = Length[bits], found = False}, Do[If[Count[Table[bits[[start + gap*i]], {i, 0, k - 1}], bits[[start]]] == k, found = True; Break[]], {gap, 1, Floor[n/(k - 1)]}, {start, 1, n - gap*(k - 1)}]; found]] BitSequence[k_] := Module[{prevSequences = {{}}, currSequences, n = 0, ExtendSequence}, ExtendSequence[seq_] := Module[{newSeq0, newSeq1, result = {}}, newSeq0 = Join[seq, {0}]; newSeq1 = Join[seq, {1}]; If[! HasEquallySpacedKBits[newSeq0, k], AppendTo[result, newSeq0]]; If[! HasEquallySpacedKBits[newSeq1, k], AppendTo[result, newSeq1]]; result]; Function[targetN, Print["k=", k, ", n=", n, ": count=", Length[prevSequences]]; While[n < targetN, n++; currSequences = Flatten[ExtendSequence /@ prevSequences, 1]; prevSequences = currSequences; Print["k=", k, ", n=", n, ": count=", Length[prevSequences]];];]] BitSequence[3][9] (* Ethan Ji, Nov 19 2024 *)
Comments