A378197 Number of 2-colorings of length n without an arithmetic progression of length 5.
1, 2, 4, 8, 16, 30, 58, 112, 216, 400, 740, 1398, 2638, 4710, 8444, 15118, 27690, 48406, 84382, 146928, 255844, 402998, 625824, 956370, 1447476, 2066828, 3225856, 5020232, 7823236, 10975318, 15264202, 21500308, 30004914, 39030820, 50728472, 65402746, 88886116
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..178
Programs
-
Mathematica
HasEquallySpacedKBits[bits_, k_] := If[k == 1, True, Module[{n = Length[bits], found = False}, Do[If[Count[Table[bits[[start + gap*i]], {i, 0, k - 1}], bits[[start]]] == k, found = True; Break[]], {gap, 1, Floor[n/(k - 1)]}, {start, 1, n - gap*(k - 1)}]; found]] BitSequence[k_] := Module[{prevSequences = {{}}, currSequences, n = 0, ExtendSequence}, ExtendSequence[seq_] := Module[{newSeq0, newSeq1, result = {}}, newSeq0 = Join[seq, {0}]; newSeq1 = Join[seq, {1}]; If[! HasEquallySpacedKBits[newSeq0, k], AppendTo[result, newSeq0]]; If[! HasEquallySpacedKBits[newSeq1, k], AppendTo[result, newSeq1]]; result]; Function[targetN, Print["k=", k, ", n=", n, ": count=", Length[prevSequences]]; While[n < targetN, n++; currSequences = Flatten[ExtendSequence /@ prevSequences, 1]; prevSequences = currSequences; Print["k=", k, ", n=", n, ": count=", Length[prevSequences]]; ]; ]] BitSequence[5][178] (* Ethan Ji, Nov 19 2024 *)
Comments