cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378203 Number of palindromic n-ary words of length n that include the last letter of their respective alphabet.

Original entry on oeis.org

1, 1, 1, 5, 7, 61, 91, 1105, 1695, 26281, 40951, 771561, 1214423, 26916709, 42664987, 1087101569, 1732076671, 49868399761, 79771413871, 2560599031177, 4108933742199, 145477500542221, 234040800869107, 9059621800971105, 14605723004036255, 613627780919407801
Offset: 0

Views

Author

John Tyler Rascoe, Nov 19 2024

Keywords

Examples

			a(0) = 1: ().
a(1) = 1: (a).
a(2) = 1: (b,b).
a(3) = 5: (a,c,a), (b,c,b), (c,a,c), (c,b,c), (c,c,c).
		

Crossrefs

Programs

  • Maple
    a:= n-> (h-> n^h-`if`(n=0, 0, (n-1)^h))(ceil(n/2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 21 2024
  • Mathematica
    h[n_] := Ceiling[n/2];a[n_] := n^h[n] - (n - 1)^h[n];Join[{1},Table[a[n],{n,25}]] (* James C. McMahon, Nov 21 2024 *)
  • PARI
    h(n) = {ceil(n/2)}
    a(n) = {n^h(n)-(n-1)^h(n)}
    
  • Python
    def A378203(n): return n**(m:=n+1>>1)-(n-1)**m if n else 1 # Chai Wah Wu, Nov 21 2024

Formula

a(n) = n^h(n) - (n-1)^h(n) for n > 0, where h(n) = ceiling(n/2).
a(n) = A047969(n-1,h(n)-1) for n > 0.