cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318467 a(n) = 2*n XOR A000203(n), where XOR is bitwise-xor (A003987) and A000203 = sum of divisors.

Original entry on oeis.org

3, 7, 2, 15, 12, 0, 6, 31, 31, 6, 26, 4, 20, 4, 6, 63, 48, 3, 50, 2, 10, 8, 54, 12, 45, 30, 30, 0, 36, 116, 30, 127, 114, 114, 118, 19, 108, 112, 118, 10, 120, 52, 122, 12, 20, 20, 110, 28, 91, 57, 46, 10, 92, 20, 38, 8, 34, 46, 74, 208, 68, 28, 22, 255, 214, 20, 194, 246, 234, 28, 198, 83, 216, 230, 234, 20, 250, 52, 206, 26
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Cf. A000396 (positions of zeros), A378227 (XOR-Moebius transform), A379234 (fixed points), A379236.
Cf. also A294899, A318457, A378988.

Programs

  • Mathematica
    Table[BitXor[2n,DivisorSigma[1,n]],{n,80}] (* Harvey P. Dale, Oct 30 2022 *)
  • PARI
    A318467(n) = bitxor(2*n,sigma(n));

Formula

a(n) = A003987(2*n, A000203(n)).
a(n) = A224880(n) - 2*A318468(n).
a(n) = 2*n XOR (A318457(n)+2*A318458(n)). - Antti Karttunen, Jan 08 2025

A378226 XOR-Moebius transform of A318457, where A318457(n) = n XOR (sigma(n)-n).

Original entry on oeis.org

1, 2, 3, 4, 5, 0, 7, 8, 15, 4, 11, 24, 13, 0, 1, 16, 17, 8, 19, 4, 27, 16, 23, 40, 27, 4, 27, 0, 29, 52, 31, 32, 39, 36, 45, 8, 37, 32, 57, 16, 41, 0, 43, 24, 5, 32, 47, 80, 63, 0, 53, 20, 53, 104, 41, 112, 63, 4, 59, 124, 61, 0, 7, 64, 91, 48, 67, 76, 75, 36, 71, 0, 73, 68, 103, 56, 83, 36, 79, 48, 111, 84, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2024

Keywords

Comments

Unique sequence satisfying SumXOR_{d divides n} a(d) = A318457(n) for all n > 0, where SumXOR is the analog of summation under the binary XOR operation. See A295901 for a list of some of the properties of Xor-Moebius transform.

Crossrefs

Cf. A000203, A001065, A003987, A318457, A378227, A378230 (positions of 0's), A378441 (fixed points).

Programs

  • PARI
    A318457(n) = bitxor(n,sigma(n)-n);
    A378226(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A318457(d)))); (v); }
Showing 1-2 of 2 results.