cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A378163 Triangle read by rows: T(n,k) is the number of subgroups of S_n isomorphic to S_k, where S_n is the n-th symmetric group.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 25, 20, 5, 1, 1, 75, 160, 60, 12, 1, 1, 231, 910, 560, 84, 7, 1, 1, 763, 5936, 5740, 560, 56, 8, 1, 1, 2619, 53424, 58716, 3276, 336, 72, 9, 1, 1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1, 1, 35695, 3304620, 8337120, 1105104, 39732, 3300, 660, 110, 11, 1, 1, 140151, 35023120, 133212420, 16571808, 1400784, 20592, 4950, 880, 132, 12, 1, 1, 568503, 322852816, 1769490580, 176344740, 16253952, 130416, 33462, 7150, 1144, 156, 13, 1
Offset: 1

Views

Author

Jianing Song, Nov 18 2024

Keywords

Comments

The number of monomorphisms (i.e., injective homomorphisms) S_k -> S_n is thus |Aut(S_k)|*T(n,k). Note that |Aut(S_k)| = 1 for k = 2, 1440 for k = 6 and k! otherwise.
T(n,k) is related to the number of homomorphisms S_k -> S_n:
k | trivial kernel | kernel S_k (k>=2) | kernel A_k (k>=3) | kernel V (k=4) | total number
-----------+----------------+-------------------+-------------------+----------------+-------------------------
1 | 1 | - | - | - | 1
-----------+----------------+-------------------+-------------------+----------------+-------------------------
2 | b(n)-1 | 1 | - | - | b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
4 | 24*T(n,4) | 1 | b(n)-1 | 6*T(n,3) | 24*T(n,4)+6*T(n,3)+b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
6 | 1440*T(n,6) | 1 | b(n)-1 | - | 1440*T(n,6)+b(n)
-----------+----------------+-------------------+-------------------+----------------+-------------------------
3, 5, >=7 | k!*T(n,k) | 1 | b(n)-1 | - | k!*T(n,k)+b(n)
Here A_n is the n-th alternating group, V = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is the Klein-four group in S_4, b = A000085, and T(n,k) = 0 for k > n.
In particular, the number of homomorphisms S_n -> S_n is 1 for n = 1, 2 for n = 2, 58 for n = 4, 1440 + b(6) = 1516 for n = 6, and n! + b(n) otherwise.

Examples

			Table reads
  1
  1, 1
  1, 3, 1
  1, 9, 4, 1
  1, 25, 20, 5, 1
  1, 75, 160, 60, 12, 1
  1, 231, 910, 560, 84, 7, 1
  1, 763, 5936, 5740, 560, 56, 8, 1
  1, 2619, 53424, 58716, 3276, 336, 72, 9, 1
  1, 9495, 397440, 734160, 79632, 4620, 480, 90, 10, 1
		

Crossrefs

Programs

  • GAP
    A378163 := function(n,k)
    local S;
    S := SymmetricGroup(n);
    return Sum(IsomorphicSubgroups(S,SymmetricGroup(k)),x->Index(S,Normalizer(S,Image(x))));
    end; # program given in the Math Stack Exchange link
    
  • GAP
    A378163_row_n := function(n)
    local L, C, G, N, k;
    N := ListWithIdenticalEntries( n, 0 );
    L := ConjugacyClassesSubgroups( SymmetricGroup(n) );
    for C in L do
    G := Representative(C);
    for k in [1..n] do
    if not IsomorphismGroups( G, SymmetricGroup(k) ) = fail then
    N[k] := N[k]+Size(C);
    fi;
    od;
    od;
    return N;
    end;

Formula

T(n,2) = A001189(n).

A378280 Number of subgroups of S_n isomorphic to S_4, where S_n is the n-th symmetric group.

Original entry on oeis.org

0, 0, 0, 1, 5, 60, 560, 5740, 58716, 734160, 8337120, 133212420, 1769490580
Offset: 1

Views

Author

Jianing Song, Nov 21 2024

Keywords

Crossrefs

Column k=4 of A378163.

Programs

  • GAP
    A378280 := function(n)
    local S;
    S := SymmetricGroup(n);
    return Sum(IsomorphicSubgroups(S, SymmetricGroup(4)), x->Index(S, Normalizer(S, Image(x))));
    end; # See A378163

A378281 Number of subgroups of S_n isomorphic to S_5, where S_n is the n-th symmetric group.

Original entry on oeis.org

0, 0, 0, 0, 1, 12, 84, 560, 3276, 79632, 1105104, 16571808, 176344740
Offset: 1

Views

Author

Jianing Song, Nov 21 2024

Keywords

Crossrefs

Column k=5 of A378163.

Programs

  • GAP
    A378281 := function(n)
    local S;
    S := SymmetricGroup(n);
    return Sum(IsomorphicSubgroups(S, SymmetricGroup(5)), x->Index(S, Normalizer(S, Image(x))));
    end;

A281097 Number of group homomorphisms S_3 -> S_n, where S_n denotes the symmetric group on n letters.

Original entry on oeis.org

1, 2, 10, 34, 146, 1036, 5692, 36380, 323164, 2394136, 19863416, 210278872, 1937685400
Offset: 1

Views

Author

Daniel McLaury, Apr 12 2017

Keywords

Crossrefs

A000085 gives the number of group homomorphisms S_2 -> S_n.

Programs

  • GAP
    List([1..8], n -> Length(AllHomomorphisms(SymmetricGroup(3), SymmetricGroup(n))));

Formula

a(n) = 6*A378279(n) + A000085(n). See A378163 for more information. - Jianing Song, Nov 27 2024

Extensions

a(8) from Georg Fischer, Jun 16 2022
a(9)-a(13) from Jianing Song, Nov 27 2024
Showing 1-4 of 4 results.