Daniel McLaury has authored 4 sequences.
A281097
Number of group homomorphisms S_3 -> S_n, where S_n denotes the symmetric group on n letters.
Original entry on oeis.org
1, 2, 10, 34, 146, 1036, 5692, 36380, 323164, 2394136, 19863416, 210278872, 1937685400
Offset: 1
A000085 gives the number of group homomorphisms S_2 -> S_n.
A165257
Triangle in which n-th row is binomial(n+k-1,k), for column k=1..n.
Original entry on oeis.org
1, 2, 3, 3, 6, 10, 4, 10, 20, 35, 5, 15, 35, 70, 126, 6, 21, 56, 126, 252, 462, 7, 28, 84, 210, 462, 924, 1716, 8, 36, 120, 330, 792, 1716, 3432, 6435, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310
Offset: 1
Daniel McLaury (daniel.mclaury(AT)gmail.com), Sep 11 2009
1;
2, 3;
3, 6, 10;
4, 10, 20, 35;
5, 15, 35, 70, 126;
6, 21, 56, 126, 252, 462;
7, 28, 84, 210, 462, 924, 1716;
A059481 with the first column (k = 0) removed.
-
Table[Binomial[n+k-1,k],{n,10},{k,n}]//Flatten (* Harvey P. Dale, Jul 31 2021 *)
-
tabl(nn) = {for (n=1, nn, for (k=1, n, print1( binomial(n+k-1, k), ", ");); print(););} \\ Michel Marcus, Jun 12 2013
A144630
Triangle read by rows: T(n,k) (1 <= k <= n) is the sum of the entries in the lower right k X k submatrix of the n X n inverse Hilbert matrix.
Original entry on oeis.org
1, 12, 4, 180, 12, 9, 2800, 880, 40, 16, 44100, 46900, 4480, 40, 25, 698544, 1615824, 411264, 13104, 84, 36, 11099088, 45094896, 23653476, 2268756, 36036, 84, 49, 176679360, 1115345088, 1017615456, 207193536, 9660816, 79776, 144, 64
Offset: 1
Daniel McLaury and Ben Golub, Dec 23 2008
The first three inverse Hilbert matrices are:
--------------
[ 1 ]
--------------
[4 -6 ]
[-6 12]
--------------
[ 9 -36 30 ]
[-36 192 -180]
[30 -180 180]
--------------
Triangle begins:
1,
12, 4,
180, 12, 9,
2800, 880, 40, 16,
44100, 46900, 4480, 40, 25,
698544, 1615824, 411264, 13104, 84, 36
-
invhilb(1), invhilb(2), invhilb(3), etc.
-
&cat[ [ &+[I[i][j]: i,j in [k..n] ]: k in [n..1 by -1] ] where I:=H^-1 where H:=Matrix(Rationals(), n, n, [ < i, j, 1/(i+j-1) >: i, j in [1..n] ] ): n in [1..8] ]; // Klaus Brockhaus, Jan 21 2009
-
invH := proc(n,i,j) (-1)^(i+j)*(i+j-1)*binomial(n+i-1,n-j)*binomial(n+j-1,n-i)* (binomial(i+j-2,i-1))^2 ; end: A144630 := proc(n,k) local T,i,j ; T := 0 ; for i from n-k+1 to n do for j from n-k+1 to n do T := T+invH(n,i,j) ; od; od; RETURN(T) ; end: for n from 1 to 10 do for k from 1 to n do printf("%a,", A144630(n,k)) : od: od: # R. J. Mathar, Jan 21 2009
-
inverseHilbert[n_, i_, j_] := (-1)^(i+j)*(i+j-1) * Binomial[n+i-1, n-j] * Binomial[n+j-1, n-i] * Binomial[i+j-2, i-1]^2; inverseHilbert[n_, k_] := Table[ inverseHilbert[n, i, j], {i, n-k+1, n}, {j, n-k+1, n}]; t[n_, k_] := Tr[ Flatten[ inverseHilbert[n, k]]]; Flatten[ Table[t[n, k], {n, 1, 8}, {k, 1, n}]] (* Jean-François Alcover, Jul 16 2012 *)
A144631
Second diagonal (or column) of A144630.
Original entry on oeis.org
4, 12, 880, 46900, 1615824, 45094896, 1115345088, 25519125060, 553014576400, 11514200107696, 232490008680384, 4581732884262352, 88532684825838400, 1683073282734360000, 31561148509363526400, 584964180982546208100
Offset: 2
Daniel McLaury and Ben Golub, Jan 20 2009
-
[ [ &+[I[i][j]: i, j in [k..n] ]: k in [n..1 by -1] ][2] where I:=H^-1 where H:=Matrix(Rationals(), n, n, [ < i, j, 1/(i+j-1) >: i, j in [1..n] ] ): n in [2..17] ]; // Klaus Brockhaus, Jan 22 2009
-
invH := proc(n,i,j) (-1)^(i+j)*(i+j-1)*binomial(n+i-1,n-j)*binomial(n+j-1,n-i)* (binomial(i+j-2,i-1))^2 ; end: A144630 := proc(n,k) local T,i,j ; T := 0 ; for i from n-k+1 to n do for j from n-k+1 to n do T := T+invH(n,i,j) ; od; od; RETURN(T) ; end: A144631 := proc(n) A144630(n+1,2) ; end: for n from 1 to 20 do printf("%a,",A144631(n)) : od: # R. J. Mathar, Jan 21 2009
Comments