cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Daniel McLaury

Daniel McLaury's wiki page.

Daniel McLaury has authored 4 sequences.

A281097 Number of group homomorphisms S_3 -> S_n, where S_n denotes the symmetric group on n letters.

Original entry on oeis.org

1, 2, 10, 34, 146, 1036, 5692, 36380, 323164, 2394136, 19863416, 210278872, 1937685400
Offset: 1

Author

Daniel McLaury, Apr 12 2017

Keywords

Crossrefs

A000085 gives the number of group homomorphisms S_2 -> S_n.

Programs

  • GAP
    List([1..8], n -> Length(AllHomomorphisms(SymmetricGroup(3), SymmetricGroup(n))));

Formula

a(n) = 6*A378279(n) + A000085(n). See A378163 for more information. - Jianing Song, Nov 27 2024

Extensions

a(8) from Georg Fischer, Jun 16 2022
a(9)-a(13) from Jianing Song, Nov 27 2024

A165257 Triangle in which n-th row is binomial(n+k-1,k), for column k=1..n.

Original entry on oeis.org

1, 2, 3, 3, 6, 10, 4, 10, 20, 35, 5, 15, 35, 70, 126, 6, 21, 56, 126, 252, 462, 7, 28, 84, 210, 462, 924, 1716, 8, 36, 120, 330, 792, 1716, 3432, 6435, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310
Offset: 1

Author

Daniel McLaury (daniel.mclaury(AT)gmail.com), Sep 11 2009

Keywords

Comments

T(n,k) is the number of non-descending sequences with length k and last number is less or equal to n. T(n,k) is also the number of integer partitions (of any positive integer) with length k and largest part is less or equal to n. - Zlatko Damijanic, Dec 06 2024

Examples

			1;
2, 3;
3, 6, 10;
4, 10, 20, 35;
5, 15, 35, 70, 126;
6, 21, 56, 126, 252, 462;
7, 28, 84, 210, 462, 924, 1716;
		

Crossrefs

A059481 with the first column (k = 0) removed.
Cf. A030662 (row sums), A001700 (diagonal).

Programs

  • Mathematica
    Table[Binomial[n+k-1,k],{n,10},{k,n}]//Flatten (* Harvey P. Dale, Jul 31 2021 *)
  • PARI
    tabl(nn) = {for (n=1, nn, for (k=1, n, print1( binomial(n+k-1, k), ", ");); print(););} \\ Michel Marcus, Jun 12 2013

A144630 Triangle read by rows: T(n,k) (1 <= k <= n) is the sum of the entries in the lower right k X k submatrix of the n X n inverse Hilbert matrix.

Original entry on oeis.org

1, 12, 4, 180, 12, 9, 2800, 880, 40, 16, 44100, 46900, 4480, 40, 25, 698544, 1615824, 411264, 13104, 84, 36, 11099088, 45094896, 23653476, 2268756, 36036, 84, 49, 176679360, 1115345088, 1017615456, 207193536, 9660816, 79776, 144, 64
Offset: 1

Author

Daniel McLaury and Ben Golub, Dec 23 2008

Keywords

Comments

The initial entries in each row form A000515. The second entries give A144631. The final entries are the squares (A000290).
Row sums are A144632. The penultimate entries in each row appear to be 4*A014105. - N. J. A. Sloane, Jan 20 2009

Examples

			The first three inverse Hilbert matrices are:
--------------
[ 1 ]
--------------
[4 -6 ]
[-6 12]
--------------
[ 9 -36 30 ]
[-36 192 -180]
[30 -180 180]
--------------
Triangle begins:
1,
12, 4,
180, 12, 9,
2800, 880, 40, 16,
44100, 46900, 4480, 40, 25,
698544, 1615824, 411264, 13104, 84, 36
		

Crossrefs

Programs

  • MATLAB
    invhilb(1), invhilb(2), invhilb(3), etc.
    
  • Magma
    &cat[ [ &+[I[i][j]: i,j in [k..n] ]: k in [n..1 by -1] ] where I:=H^-1 where H:=Matrix(Rationals(), n, n, [ < i, j, 1/(i+j-1) >: i, j in [1..n] ] ): n in [1..8] ]; // Klaus Brockhaus, Jan 21 2009
  • Maple
    invH := proc(n,i,j) (-1)^(i+j)*(i+j-1)*binomial(n+i-1,n-j)*binomial(n+j-1,n-i)* (binomial(i+j-2,i-1))^2 ; end: A144630 := proc(n,k) local T,i,j ; T := 0 ; for i from n-k+1 to n do for j from n-k+1 to n do T := T+invH(n,i,j) ; od; od; RETURN(T) ; end: for n from 1 to 10 do for k from 1 to n do printf("%a,", A144630(n,k)) : od: od: # R. J. Mathar, Jan 21 2009
  • Mathematica
    inverseHilbert[n_, i_, j_] := (-1)^(i+j)*(i+j-1) * Binomial[n+i-1, n-j] * Binomial[n+j-1, n-i] * Binomial[i+j-2, i-1]^2; inverseHilbert[n_, k_] := Table[ inverseHilbert[n, i, j], {i, n-k+1, n}, {j, n-k+1, n}]; t[n_, k_] := Tr[ Flatten[ inverseHilbert[n, k]]]; Flatten[ Table[t[n, k], {n, 1, 8}, {k, 1, n}]] (* Jean-François Alcover, Jul 16 2012 *)

Extensions

More terms from R. J. Mathar and Klaus Brockhaus, Jan 21 2009

A144631 Second diagonal (or column) of A144630.

Original entry on oeis.org

4, 12, 880, 46900, 1615824, 45094896, 1115345088, 25519125060, 553014576400, 11514200107696, 232490008680384, 4581732884262352, 88532684825838400, 1683073282734360000, 31561148509363526400, 584964180982546208100
Offset: 2

Author

Daniel McLaury and Ben Golub, Jan 20 2009

Keywords

Programs

  • Magma
    [ [ &+[I[i][j]: i, j in [k..n] ]: k in [n..1 by -1] ][2] where I:=H^-1 where H:=Matrix(Rationals(), n, n, [ < i, j, 1/(i+j-1) >: i, j in [1..n] ] ): n in [2..17] ]; // Klaus Brockhaus, Jan 22 2009
  • Maple
    invH := proc(n,i,j) (-1)^(i+j)*(i+j-1)*binomial(n+i-1,n-j)*binomial(n+j-1,n-i)* (binomial(i+j-2,i-1))^2 ; end: A144630 := proc(n,k) local T,i,j ; T := 0 ; for i from n-k+1 to n do for j from n-k+1 to n do T := T+invH(n,i,j) ; od; od; RETURN(T) ; end: A144631 := proc(n) A144630(n+1,2) ; end: for n from 1 to 20 do printf("%a,",A144631(n)) : od: # R. J. Mathar, Jan 21 2009

Extensions

More terms from R. J. Mathar and Klaus Brockhaus, Jan 21 2009