cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A378355 Numbers appearing exactly once in A378035 (greatest perfect power < prime(n)).

Original entry on oeis.org

125, 216, 243, 64000, 1295029, 2535525316, 542939080312
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2024

Keywords

Comments

These are perfect-powers p such that the interval from p to the next perfect power contains a unique prime.
Is this sequence infinite? See A178700.

Examples

			We have 125 because 127 is the only prime between 125 and 128.
		

Crossrefs

The next prime is A178700.
Singletons in A378035 (union A378253), restriction of A081676.
The next perfect power is A378374.
Swapping primes and perfect powers gives A379154, unique case of A377283.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the not perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.
A378249 gives least perfect power > prime(n) (run-lengths A378251), restrict of A377468.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    y=Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,1000}];
    Select[Union[y],Count[y,#]==1&]

Formula

A151800(a(n)) = A178700(n).

A379155 Numbers k such that there is a unique prime between the k-th and (k+1)-th prime powers (A246655).

Original entry on oeis.org

2, 3, 5, 7, 9, 10, 13, 15, 17, 18, 22, 23, 26, 27, 31, 32, 40, 42, 43, 44, 52, 53, 67, 68, 69, 70, 77, 78, 85, 86, 90, 91, 116, 117, 119, 120, 135, 136, 151, 152, 169, 170, 186, 187, 197, 198, 243, 244, 246, 247, 291, 292, 312, 313, 339, 340, 358, 360, 362
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2024

Keywords

Comments

Numbers k such that exactly one of A246655(k) and A246655(k+1) is prime. - Robert Israel, Jan 22 2025
The prime powers themselves are: 3, 4, 7, 9, 13, 16, 23, 27, 31, 32, 47, 49, 61, 64, ...

Examples

			The 4th and 5th prime powers are 5 and 7, with interval (5,6,7) containing two primes, so 4 is not in the sequence.
The 13th and 14th prime powers are 23 and 25, with interval (23,24,25) containing only one prime, so 13 is in the sequence.
The 18th and 19th prime powers are 32 and 37, with interval (32,33,34,35,36,37) containing just one prime 37, so 18 is in the sequence.
		

Crossrefs

These are the positions of 1 in A366835, for perfect powers A080769.
For perfect powers instead of prime powers we have A378368.
For no primes we have A379156, for perfect powers A274605.
The prime powers themselves are A379157, for previous A175106.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Maple
    N:= 1000: # for terms k where A246655(k+1) <+ N
    P:= select(isprime,[2,seq(i,i=3..N,2)]):
    S:= convert(P,set):
    for p in P while p^2 <= N do
      S:= S union {seq(p^j,j=2..ilog[p](N))}
    od:
    PP:= sort(convert(S,list)):
    state:= 1: Res:= NULL:
    ip:= 2:
    for i from 2 to nops(PP) do
      if PP[i] = P[ip] then
        if state = 0 then Res:= Res,i-1 fi;
        state:= 1;
        ip:= ip+1;
      else
        if state = 1 then Res:= Res,i-1 fi;
        state:= 0;
      fi
    od:
    Res; # Robert Israel, Jan 22 2025
  • Mathematica
    v=Select[Range[100],PrimePowerQ];
    Select[Range[Length[v]-1],Length[Select[Range[v[[#]],v[[#+1]]],PrimeQ]]==1&]

Formula

A246655(a(n)) = A379157(n).

A379157 Prime powers p such that the interval from p to the next prime power contains a unique prime number.

Original entry on oeis.org

3, 4, 7, 9, 13, 16, 23, 27, 31, 32, 47, 49, 61, 64, 79, 81, 113, 125, 127, 128, 167, 169, 241, 243, 251, 256, 283, 289, 337, 343, 359, 361, 509, 512, 523, 529, 619, 625, 727, 729, 839, 841, 953, 961, 1021, 1024, 1327, 1331, 1367, 1369, 1669, 1681, 1847, 1849
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2024

Keywords

Examples

			The next prime power after 32 is 37, with interval (32,33,34,35,36,37) containing just one prime 37, so 32 is in the sequence.
		

Crossrefs

For no primes we have A068315/A379156, for perfect powers A116086/A274605.
The previous instead of next prime power we have A175106.
For perfect powers instead of prime powers we have A378355.
The positions of these prime powers (in A246655) are A379155.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers.
A366833 counts prime powers between primes, see A053607, A304521.
A366835 counts primes between prime powers, for perfect powers A080769.

Programs

  • Mathematica
    v=Select[Range[100],PrimePowerQ]
    nextpripow[n_]:=NestWhile[#+1&,n+1,!PrimePowerQ[#]&]
    Select[v,Length[Select[Range[#,nextpripow[#]],PrimeQ]]==1&]

Formula

a(n) = A246655(A379155(n)).

A378368 Positions (in A001597) of consecutive perfect powers with a unique prime between them.

Original entry on oeis.org

15, 20, 22, 295, 1257
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root.
The perfect powers themselves are given by A001597(a(n)) = A378355(n).

Examples

			The 15th and 16th perfect powers are 125 and 128, and 127 is the only prime between them, so 15 is in the sequence.
		

Crossrefs

These are the positions of 1 in A080769.
The next prime after A001597(a(n)) is A178700(n).
For no (instead of one) perfect powers we have A274605.
Swapping 'prime' and 'perfect power' gives A377434, unique case of A377283.
The next perfect power after A001597(a(n)) is A378374(n).
For prime powers instead of perfect powers we have A379155.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A081676 gives the greatest perfect power <= n.
A377432 counts perfect powers between primes, see A377436, A377466.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    v=Select[Range[1000],perpowQ];
    Select[Range[Length[v]-1],Length[Select[Range[v[[#]],v[[#+1]]],PrimeQ]]==1&]

Formula

We have A001597(a(n)) = A378355(n) < A178700(n) < A378374(n).

A378364 Prime numbers such that the interval from the previous prime number contains a unique perfect power.

Original entry on oeis.org

2, 5, 17, 53, 67, 83, 101, 131, 149, 173, 197, 223, 227, 251, 257, 293, 331, 347, 367, 401, 443, 487, 521, 541, 577, 631, 677, 733, 787, 853, 907, 967, 1009, 1031, 1091, 1163, 1229, 1297, 1361, 1373, 1447, 1523, 1601, 1693, 1733, 1777, 1861, 1949, 2027, 2053
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2024

Keywords

Comments

Perfect-powers (A001597) are 1 and numbers with a proper integer root.

Examples

			The prime before 17 is 13, and the interval (13,14,15,16,17) contains only one perfect power 16, so 17 is in the sequence.
The prime before 29 is 23, and the interval (23,24,25,26,27,28,29) contains two perfect powers 25 and 27, so 29 is not in the sequence.
		

Crossrefs

For non prime powers we have A006512.
For zero instead of one perfect power we have the prime terms of A345531.
The indices of these primes are the positions of 1 in A377432.
The indices of these primes are 1 + A377434(n-1).
For more than one perfect power see A377466.
Swapping "prime" with "perfect power" gives A378374.
For next instead of previous prime we have A379154.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A081676 gives the greatest perfect power <= n.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[1000],PrimeQ[#]&&Length[Select[Range[NextPrime[#,-1],#],perpowQ]]==1&]

A379154 Prime numbers p such that the interval from p to the next prime number contains a unique perfect power.

Original entry on oeis.org

3, 13, 47, 61, 79, 97, 127, 139, 167, 193, 211, 223, 241, 251, 283, 317, 337, 359, 397, 439, 479, 509, 523, 571, 619, 673, 727, 773, 839, 887, 953, 997, 1021, 1087, 1153, 1223, 1291, 1327, 1367, 1439, 1511, 1597, 1669, 1723, 1759, 1847, 1933, 2017, 2039, 2113
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root.

Examples

			The prime after 13 is 17, and the interval (13,14,15,16,17) contains only one perfect power 16, so 13 is in the sequence.
		

Crossrefs

The indices of these primes are one plus the positions of 1 in A377432.
For zero instead of one perfect power we have the primes indexed by A377436.
The indices of these primes are A377434.
Swapping "prime" with "perfect power" gives A378355, indices A378368.
For previous instead of next prime we have A378364.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A081676 gives the greatest perfect power <= n.
A116086 gives perfect powers with no primes between them and the next perfect power.
A366833 counts prime powers between primes, see A053607, A304521.
A377468 gives the least perfect power > n.

Programs

  • Maple
    N:= 10^4: # to get all entries <= N
    S:={seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))}:
    S:= sort(convert(S,list)):
    J:= select(i -> nextprime(S[i]) < S[i+1] and prevprime(S[i]) > S[i-1], [$2..nops(S)-1]):
    J:= [1,op(J)]:
    map(prevprime, S[J]); # Robert Israel, Jan 19 2025
  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[1000],PrimeQ[#]&&Length[Select[Range[#,NextPrime[#]],perpowQ]]==1&]
  • PARI
    is_a379154(n) = isprime(n) && #select(x->ispower(x), [n+1..nextprime(n+1)-1])==1 \\ Hugo Pfoertner, Dec 19 2024

Formula

a(n) = A151799(A378364(n+1)).
Showing 1-6 of 6 results.