A378377 Triangle read by rows: T(n,k) is the number of non-descending sequences with length k such that the maximum of the length and the last number is n.
1, 1, 3, 1, 3, 10, 1, 4, 10, 35, 1, 5, 15, 35, 126, 1, 6, 21, 56, 126, 462, 1, 7, 28, 84, 210, 462, 1716, 1, 8, 36, 120, 330, 792, 1716, 6435, 1, 9, 45, 165, 495, 1287, 3003, 6435, 24310, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 92378
Offset: 1
Examples
Triangle begins: 1 1 3 1 3 10 1 4 10 35 1 5 15 35 126 1 6 21 56 126 462 1 7 28 84 210 462 1716 ... For T(3,1) solution is |{(3)}| = 1. For T(3,2) solution is |{(1,3), (2,3), (3,3)}| = 3. For T(3,3) solution is |{(1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,3), (3,3,3)}| = 10.
Programs
-
Mathematica
T[n_, k_] := Which[ k == 1, 1, k == n, Binomial[2n-1, n], k == n-1, T[n-1, n-1], 1 < k < n-1, T[n-1, k] + T[n, k-1] ]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten
-
PARI
T(n,k)={if(k
Andrew Howroyd, Nov 24 2024
Formula
T(n,n) = binomial(2*n-1,n).
T(n,k) = binomial(k+n-2, n-1) for k < n.
Comments