cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A378393 Decimal expansion of the midradius of a deltoidal icositetrahedron with unit shorter edge length.

Original entry on oeis.org

1, 5, 6, 0, 6, 6, 0, 1, 7, 1, 7, 7, 9, 8, 2, 1, 2, 8, 6, 6, 0, 1, 2, 6, 6, 5, 4, 3, 1, 5, 7, 2, 7, 3, 5, 5, 8, 9, 2, 7, 2, 5, 3, 9, 0, 6, 5, 3, 2, 7, 1, 1, 0, 5, 4, 8, 8, 2, 5, 0, 9, 8, 0, 3, 4, 9, 3, 0, 4, 9, 3, 5, 8, 8, 4, 6, 5, 8, 0, 2, 7, 9, 1, 3, 7, 7, 9, 0, 6, 5
Offset: 1

Views

Author

Paolo Xausa, Nov 30 2024

Keywords

Comments

The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.

Examples

			1.5606601717798212866012665431572735589272539065327...
		

Crossrefs

Cf. A378390 (surface area), A378391 (volume), A378392 (inradius), A378394 (dihedral angle).
Cf. A285871 (midradius of a (small) rhombicuboctahedron with unit edge).

Programs

  • Mathematica
    First[RealDigits[(2 + Sqrt[18])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalIcositetrahedron", "Midradius"], 10, 100]]

Formula

Equals (2 + 3*sqrt(2))/4 = (2 + A010474)/4.

A378390 Decimal expansion of the surface area of a deltoidal icositetrahedron with unit shorter edge length.

Original entry on oeis.org

3, 0, 6, 9, 4, 8, 9, 5, 7, 2, 4, 0, 3, 1, 0, 0, 9, 5, 9, 0, 7, 7, 0, 3, 1, 4, 7, 8, 4, 0, 5, 0, 6, 7, 3, 3, 8, 7, 9, 6, 5, 1, 0, 7, 4, 6, 3, 1, 6, 1, 0, 1, 8, 7, 7, 3, 0, 7, 0, 1, 5, 3, 8, 6, 7, 0, 2, 7, 7, 7, 1, 9, 8, 7, 8, 9, 1, 2, 5, 1, 5, 6, 7, 7, 9, 0, 3, 1, 3, 6
Offset: 2

Views

Author

Paolo Xausa, Nov 29 2024

Keywords

Comments

The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.

Examples

			30.694895724031009590770314784050673387965107463161...
		

Crossrefs

Cf. A378391 (volume), A378392 (inradius), A378393 (midradius), A378394 (dihedral angle).
Cf. A343964 (surface area of a (small) rhombicuboctahedron with unit edge).
Cf. A010466.

Programs

  • Mathematica
    First[RealDigits[6*Sqrt[29 - Sqrt[8]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalIcositetrahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 6*sqrt(29 - 2*sqrt(2)) = 6*sqrt(29 - A010466).

A378392 Decimal expansion of the inradius of a deltoidal icositetrahedron with unit shorter edge length.

Original entry on oeis.org

1, 4, 5, 7, 5, 7, 6, 7, 4, 3, 1, 6, 9, 4, 5, 0, 6, 6, 7, 9, 1, 9, 3, 4, 2, 8, 7, 0, 7, 1, 8, 4, 9, 7, 0, 5, 7, 3, 8, 7, 3, 1, 3, 9, 0, 1, 9, 3, 5, 9, 3, 3, 5, 1, 6, 0, 6, 3, 2, 3, 3, 1, 9, 7, 8, 7, 0, 3, 7, 3, 9, 1, 8, 5, 9, 8, 6, 4, 1, 4, 7, 5, 9, 8, 5, 6, 1, 2, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 30 2024

Keywords

Comments

The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.

Examples

			1.4575767431694506679193428707184970573873139019359...
		

Crossrefs

Cf. A378390 (surface area), A378391 (volume), A378393 (midradius), A378394 (dihedral angle).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[Sqrt[39/34 + 47/(34*Sqrt[2])], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalIcositetrahedron", "Inradius"], 10, 100]]

Formula

Equals sqrt(39/34 + 47/(34*sqrt(2))) = sqrt(39/34 + 47/(34*A002193)).

A378394 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal icositetrahedron.

Original entry on oeis.org

2, 4, 1, 0, 6, 1, 3, 1, 4, 1, 6, 5, 3, 4, 0, 7, 6, 0, 6, 1, 5, 3, 6, 6, 5, 7, 8, 5, 4, 6, 5, 9, 4, 9, 1, 8, 5, 9, 8, 0, 3, 6, 2, 9, 0, 6, 0, 8, 9, 5, 9, 1, 9, 8, 3, 5, 2, 1, 7, 8, 6, 7, 1, 8, 7, 8, 5, 0, 3, 5, 1, 5, 8, 3, 3, 7, 2, 6, 7, 4, 1, 9, 4, 7, 8, 5, 0, 5, 5, 6
Offset: 1

Views

Author

Paolo Xausa, Nov 30 2024

Keywords

Comments

The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.

Examples

			2.410613141653407606153665785465949185980362906...
		

Crossrefs

Cf. A378390 (surface area), A378391 (volume), A378392 (inradius), A378393 (midradius).
Cf. A177870 and A195702 (dihedral angles of a (small) rhombicuboctahedron).

Programs

  • Mathematica
    First[RealDigits[ArcSec[Sqrt[32] - 7], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DeltoidalIcositetrahedron", "DihedralAngles"]], 10, 100]]
  • PARI
    acos(-(4*sqrt(2) + 7)/17) \\ Charles R Greathouse IV, Feb 11 2025

Formula

Equals arcsec(4*sqrt(2) - 7) = arcsec(A010487 - 7).
Equals arccos(-(4*sqrt(2) + 7)/17) = arccos(-(A010487 + 7)/17).

A380704 Decimal expansion of the acute vertex angles, in radians, in a deltoidal icositetrahedron face.

Original entry on oeis.org

1, 4, 2, 3, 8, 2, 1, 1, 3, 6, 1, 3, 1, 3, 9, 1, 5, 4, 9, 4, 4, 5, 5, 5, 7, 3, 5, 6, 6, 6, 6, 9, 0, 4, 6, 8, 4, 8, 8, 5, 7, 9, 7, 9, 9, 0, 2, 9, 5, 1, 0, 1, 3, 5, 9, 0, 4, 7, 9, 1, 8, 9, 5, 6, 3, 9, 5, 0, 2, 3, 1, 3, 5, 2, 9, 6, 2, 1, 8, 6, 1, 2, 5, 7, 8, 9, 9, 9, 6, 0
Offset: 1

Views

Author

Paolo Xausa, Jan 31 2025

Keywords

Examples

			1.4238211361313915494455573566669046848857979902951...
		

Crossrefs

Cf. A380705 (obtuse face angle).

Programs

  • Mathematica
    First[RealDigits[ArcCos[1/2 - Sqrt[2]/4], 10, 100]]

Formula

Equals arccos(1/2 - sqrt(2)/4) = arccos(1/2 - A020765).
Equals (2*Pi - A380705)/3.

A380705 Decimal expansion of the obtuse vertex angle, in radians, in a deltoidal icositetrahedron face.

Original entry on oeis.org

2, 0, 1, 1, 7, 2, 1, 8, 9, 8, 7, 8, 5, 4, 1, 1, 8, 2, 8, 5, 8, 8, 6, 1, 4, 6, 9, 6, 5, 5, 8, 2, 9, 1, 7, 1, 3, 7, 3, 6, 9, 4, 4, 8, 2, 7, 8, 6, 4, 9, 0, 7, 5, 6, 4, 8, 0, 6, 1, 3, 2, 3, 1, 5, 4, 3, 0, 5, 6, 3, 4, 0, 6, 6, 8, 3, 7, 6, 2, 1, 5, 9, 5, 1, 9, 0, 7, 0, 8, 4
Offset: 1

Views

Author

Paolo Xausa, Jan 31 2025

Keywords

Examples

			2.0117218987854118285886146965582917137369448278649...
		

Crossrefs

Cf. A380704 (face acute angles).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-1/4 - Sqrt[2]/8], 10, 100]]

Formula

Equals arccos(-1/4 - sqrt(2)/8) = arccos(-1/4 - A020789).
Equals 2*Pi - 3*A380704.

A382005 Decimal expansion of the isoperimetric quotient of a deltoidal icositetrahedron.

Original entry on oeis.org

8, 6, 9, 7, 7, 4, 2, 8, 1, 9, 1, 0, 0, 6, 3, 7, 6, 0, 2, 7, 3, 8, 9, 4, 2, 6, 2, 6, 8, 1, 2, 9, 9, 8, 5, 7, 8, 1, 9, 9, 0, 5, 0, 6, 6, 3, 8, 6, 7, 3, 5, 5, 1, 1, 2, 1, 5, 4, 6, 1, 7, 0, 7, 8, 0, 1, 7, 6, 6, 8, 6, 7, 3, 7, 9, 7, 9, 2, 0, 6, 2, 7, 5, 9, 8, 2, 5, 5, 8, 3
Offset: 0

Views

Author

Paolo Xausa, Mar 17 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.8697742819100637602738942626812998578199050663867...
		

Crossrefs

Cf. A378390 (surface area), A378391 (volume).

Programs

  • Mathematica
    First[RealDigits[Pi/51*Sqrt[(3407 + 2384*Sqrt[2])/34], 10, 100]]

Formula

Equals 36*Pi*A378391^2/(A378390^3).
Equals (Pi/51)*sqrt((3407 + 2384*sqrt(2))/34) = (A000796/51)*sqrt((3407 + 2384*A002193)/34).
Showing 1-7 of 7 results.