cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A378712 Decimal expansion of the surface area of a disdyakis dodecahedron with unit shorter edge length.

Original entry on oeis.org

3, 2, 0, 6, 6, 7, 3, 4, 0, 1, 0, 5, 3, 1, 9, 4, 4, 4, 1, 3, 3, 4, 9, 8, 2, 3, 8, 7, 4, 8, 9, 5, 7, 2, 3, 4, 6, 2, 8, 6, 3, 4, 9, 5, 8, 5, 1, 5, 5, 3, 2, 5, 4, 5, 6, 0, 5, 3, 0, 9, 5, 7, 9, 9, 5, 3, 6, 2, 4, 8, 9, 0, 0, 6, 0, 2, 1, 1, 0, 7, 4, 3, 5, 3, 1, 8, 1, 5, 7, 1
Offset: 2

Views

Author

Paolo Xausa, Dec 06 2024

Keywords

Comments

The disdyakis dodecahedron is the dual polyhedron of the truncated cuboctahedron (great rhombicuboctahedron).

Examples

			32.066734010531944413349823874895723462863495851553...
		

Crossrefs

Cf. A378713 (volume), A378714 (inradius), A378393 (midradius), A378715 (dihedral angle).
Cf. A377343 (surface area of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[6/7*Sqrt[783 + 436*Sqrt[2]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DisdyakisDodecahedron", "SurfaceArea"], 10, 100]]
  • PARI
    sqrt(783 + 436*sqrt(2))*6/7 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals (6/7)*sqrt(783 + 436*sqrt(2)) = (6/7)*sqrt(783 + 436*A002193).

A378713 Decimal expansion of the volume of a disdyakis dodecahedron with unit shorter edge length.

Original entry on oeis.org

1, 6, 2, 8, 8, 9, 1, 9, 0, 8, 2, 9, 2, 3, 5, 2, 5, 0, 3, 8, 5, 0, 3, 1, 2, 2, 5, 0, 3, 6, 1, 9, 4, 4, 1, 0, 4, 5, 9, 9, 6, 7, 9, 7, 4, 4, 7, 3, 5, 7, 0, 2, 7, 2, 1, 7, 2, 4, 8, 7, 2, 2, 8, 3, 5, 7, 8, 3, 7, 0, 1, 3, 4, 1, 5, 1, 8, 7, 0, 4, 9, 5, 9, 7, 6, 5, 0, 6, 9, 2
Offset: 2

Views

Author

Paolo Xausa, Dec 07 2024

Keywords

Comments

The disdyakis dodecahedron is the dual polyhedron of the truncated cuboctahedron (great rhombicuboctahedron).

Examples

			16.288919082923525038503122503619441045996797447357...
		

Crossrefs

Cf. A378712 (surface area), A378714 (inradius), A378393 (midradius), A378715 (dihedral angle).
Cf. A377344 (volume of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[Sqrt[6582 + 4539*Sqrt[2]]/7, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DisdyakisDodecahedron", "Volume"], 10, 100]]
  • PARI
    sqrt(3*(2194 + 1513*sqrt(2)))/7 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals sqrt(3*(2194 + 1513*sqrt(2)))/7 = sqrt(6582 + 4539*A002193)/7.

A378714 Decimal expansion of the inradius of a disdyakis dodecahedron with unit shorter edge length.

Original entry on oeis.org

1, 5, 2, 3, 9, 0, 8, 1, 4, 8, 3, 2, 3, 4, 5, 7, 5, 4, 9, 6, 9, 3, 5, 8, 1, 3, 2, 9, 4, 8, 8, 9, 5, 4, 5, 2, 1, 6, 5, 8, 1, 0, 0, 3, 9, 2, 5, 2, 5, 7, 8, 6, 6, 3, 5, 2, 9, 8, 1, 6, 1, 8, 3, 0, 8, 3, 5, 9, 2, 3, 5, 6, 8, 5, 3, 2, 5, 3, 0, 7, 7, 4, 8, 6, 3, 5, 6, 8, 2, 3
Offset: 1

Views

Author

Paolo Xausa, Dec 07 2024

Keywords

Comments

The disdyakis dodecahedron is the dual polyhedron of the truncated cuboctahedron (great rhombicuboctahedron).

Examples

			1.5239081483234575496935813294889545216581003925...
		

Crossrefs

Cf. A378712 (surface area), A378713 (volume), A378393 (midradius), A378715 (dihedral angle).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[Sqrt[3/97*(166 + 95*Sqrt[2])]/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DisdyakisDodecahedron", "Inradius"], 10, 100]]
  • PARI
    sqrt((166 + 95*sqrt(2))*3/97)/2 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals sqrt((3/97)*(166 + 95*sqrt(2)))/2 = sqrt((3/97)*(166 + 95*A002193))/2.

A378715 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a disdyakis dodecahedron.

Original entry on oeis.org

2, 7, 0, 6, 6, 9, 4, 6, 4, 5, 4, 7, 9, 2, 2, 8, 7, 8, 5, 6, 2, 5, 8, 6, 4, 4, 3, 8, 3, 0, 6, 8, 2, 8, 0, 4, 5, 6, 9, 8, 4, 4, 5, 4, 5, 5, 5, 7, 1, 7, 1, 3, 1, 9, 1, 2, 4, 4, 6, 3, 9, 9, 4, 2, 6, 1, 1, 6, 0, 6, 9, 9, 3, 3, 2, 9, 9, 0, 5, 8, 4, 7, 8, 6, 4, 1, 0, 1, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Dec 07 2024

Keywords

Comments

The disdyakis dodecahedron is the dual polyhedron of the truncated cuboctahedron (great rhombicuboctahedron).

Examples

			2.7066946454792287856258644383068280456984454555717...
		

Crossrefs

Cf. A378712 (surface area), A378713 (volume), A378714 (inradius), A378393 (midradius).
Cf. A177870, A195698 and A195702 (dihedral angles of a truncated cuboctahedron (great rhombicuboctahedron)).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(71 + 12*Sqrt[2])/97], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DisdyakisDodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-(71 + 12*sqrt(2))/97) = arccos(-(71 + 12*A002193)/97).

A378390 Decimal expansion of the surface area of a deltoidal icositetrahedron with unit shorter edge length.

Original entry on oeis.org

3, 0, 6, 9, 4, 8, 9, 5, 7, 2, 4, 0, 3, 1, 0, 0, 9, 5, 9, 0, 7, 7, 0, 3, 1, 4, 7, 8, 4, 0, 5, 0, 6, 7, 3, 3, 8, 7, 9, 6, 5, 1, 0, 7, 4, 6, 3, 1, 6, 1, 0, 1, 8, 7, 7, 3, 0, 7, 0, 1, 5, 3, 8, 6, 7, 0, 2, 7, 7, 7, 1, 9, 8, 7, 8, 9, 1, 2, 5, 1, 5, 6, 7, 7, 9, 0, 3, 1, 3, 6
Offset: 2

Views

Author

Paolo Xausa, Nov 29 2024

Keywords

Comments

The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.

Examples

			30.694895724031009590770314784050673387965107463161...
		

Crossrefs

Cf. A378391 (volume), A378392 (inradius), A378393 (midradius), A378394 (dihedral angle).
Cf. A343964 (surface area of a (small) rhombicuboctahedron with unit edge).
Cf. A010466.

Programs

  • Mathematica
    First[RealDigits[6*Sqrt[29 - Sqrt[8]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalIcositetrahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 6*sqrt(29 - 2*sqrt(2)) = 6*sqrt(29 - A010466).

A378391 Decimal expansion of the volume of a deltoidal icositetrahedron with unit shorter edge length.

Original entry on oeis.org

1, 4, 9, 1, 3, 3, 8, 8, 7, 1, 3, 7, 8, 6, 3, 3, 8, 7, 9, 0, 8, 2, 2, 7, 9, 8, 1, 1, 3, 0, 6, 5, 4, 4, 8, 1, 0, 9, 4, 8, 2, 4, 4, 5, 1, 3, 5, 2, 1, 9, 9, 8, 0, 2, 4, 7, 7, 1, 9, 1, 7, 9, 1, 3, 1, 6, 4, 1, 8, 8, 0, 4, 2, 9, 6, 1, 4, 1, 2, 5, 2, 2, 6, 9, 4, 8, 2, 1, 7, 0
Offset: 2

Views

Author

Paolo Xausa, Nov 30 2024

Keywords

Comments

The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.

Examples

			14.9133887137863387908227981130654481094824451352...
		

Crossrefs

Cf. A378390 (surface area), A378392 (inradius), A378393 (midradius), A378394 (dihedral angle).
Cf. A343965 (volume of a (small) rhombicuboctahedron with unit edge).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[Sqrt[122 + 71*Sqrt[2]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalIcositetrahedron", "Volume"], 10, 100]]

Formula

Equals sqrt(122 + 71*sqrt(2)) = sqrt(122 + 71*A002193).

A378392 Decimal expansion of the inradius of a deltoidal icositetrahedron with unit shorter edge length.

Original entry on oeis.org

1, 4, 5, 7, 5, 7, 6, 7, 4, 3, 1, 6, 9, 4, 5, 0, 6, 6, 7, 9, 1, 9, 3, 4, 2, 8, 7, 0, 7, 1, 8, 4, 9, 7, 0, 5, 7, 3, 8, 7, 3, 1, 3, 9, 0, 1, 9, 3, 5, 9, 3, 3, 5, 1, 6, 0, 6, 3, 2, 3, 3, 1, 9, 7, 8, 7, 0, 3, 7, 3, 9, 1, 8, 5, 9, 8, 6, 4, 1, 4, 7, 5, 9, 8, 5, 6, 1, 2, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 30 2024

Keywords

Comments

The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.

Examples

			1.4575767431694506679193428707184970573873139019359...
		

Crossrefs

Cf. A378390 (surface area), A378391 (volume), A378393 (midradius), A378394 (dihedral angle).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[Sqrt[39/34 + 47/(34*Sqrt[2])], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalIcositetrahedron", "Inradius"], 10, 100]]

Formula

Equals sqrt(39/34 + 47/(34*sqrt(2))) = sqrt(39/34 + 47/(34*A002193)).

A378394 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal icositetrahedron.

Original entry on oeis.org

2, 4, 1, 0, 6, 1, 3, 1, 4, 1, 6, 5, 3, 4, 0, 7, 6, 0, 6, 1, 5, 3, 6, 6, 5, 7, 8, 5, 4, 6, 5, 9, 4, 9, 1, 8, 5, 9, 8, 0, 3, 6, 2, 9, 0, 6, 0, 8, 9, 5, 9, 1, 9, 8, 3, 5, 2, 1, 7, 8, 6, 7, 1, 8, 7, 8, 5, 0, 3, 5, 1, 5, 8, 3, 3, 7, 2, 6, 7, 4, 1, 9, 4, 7, 8, 5, 0, 5, 5, 6
Offset: 1

Views

Author

Paolo Xausa, Nov 30 2024

Keywords

Comments

The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.

Examples

			2.410613141653407606153665785465949185980362906...
		

Crossrefs

Cf. A378390 (surface area), A378391 (volume), A378392 (inradius), A378393 (midradius).
Cf. A177870 and A195702 (dihedral angles of a (small) rhombicuboctahedron).

Programs

  • Mathematica
    First[RealDigits[ArcSec[Sqrt[32] - 7], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DeltoidalIcositetrahedron", "DihedralAngles"]], 10, 100]]
  • PARI
    acos(-(4*sqrt(2) + 7)/17) \\ Charles R Greathouse IV, Feb 11 2025

Formula

Equals arcsec(4*sqrt(2) - 7) = arcsec(A010487 - 7).
Equals arccos(-(4*sqrt(2) + 7)/17) = arccos(-(A010487 + 7)/17).

A380734 Decimal expansion of the medium/short edge length ratio of a disdyakis dodecahedron.

Original entry on oeis.org

1, 3, 3, 7, 7, 0, 8, 7, 1, 8, 6, 6, 8, 4, 1, 8, 2, 4, 5, 6, 5, 8, 2, 2, 8, 4, 6, 5, 5, 6, 3, 3, 7, 7, 3, 3, 6, 2, 2, 3, 3, 6, 0, 4, 9, 1, 3, 1, 3, 7, 5, 2, 3, 3, 2, 7, 5, 6, 4, 3, 6, 9, 7, 4, 4, 2, 2, 6, 1, 3, 7, 3, 6, 1, 5, 4, 2, 1, 1, 6, 6, 7, 8, 3, 2, 3, 9, 1, 9, 8
Offset: 1

Views

Author

Paolo Xausa, Jan 31 2025

Keywords

Examples

			1.33770871866841824565822846556337733622336049131...
		

Crossrefs

Cf. A380735 (long/short edge length ratio).

Programs

  • Mathematica
    First[RealDigits[3/14*(2 + 3*Sqrt[2]), 10, 100]]
  • PARI
    (2 + 3*sqrt(2))*3/14 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals (3/14)*(2 + 3*sqrt(2)) = (3/14)*(2 + A010474).

A380735 Decimal expansion of the long/short edge length ratio of a disdyakis dodecahedron.

Original entry on oeis.org

1, 6, 3, 0, 6, 0, 1, 9, 3, 7, 4, 8, 1, 8, 7, 0, 7, 2, 1, 2, 5, 7, 3, 8, 4, 1, 0, 3, 4, 5, 8, 5, 2, 8, 2, 9, 6, 9, 3, 8, 5, 2, 4, 5, 5, 3, 6, 2, 5, 2, 7, 8, 2, 9, 6, 1, 6, 8, 0, 9, 7, 1, 0, 5, 4, 2, 7, 2, 4, 7, 4, 9, 6, 9, 2, 3, 1, 5, 8, 1, 4, 8, 4, 0, 7, 1, 9, 8, 2, 1
Offset: 1

Views

Author

Paolo Xausa, Jan 31 2025

Keywords

Comments

Apart from leading digits the same as A343069. - R. J. Mathar, Feb 03 2025

Examples

			1.630601937481870721257384103458528296938524553625...
		

Crossrefs

Cf. A380734 (medium/short edge length ratio).

Programs

  • Mathematica
    First[RealDigits[(10 + Sqrt[2])/7, 10, 100]]
  • PARI
    (10 + sqrt(2))/7 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals (10 + sqrt(2))/7 = (10 + A002193)/7.
Showing 1-10 of 15 results. Next