A378400 Number of subsets of {1,2,3,...,n}^2 with the property that every point has exactly two other closest points.
1, 1, 2, 8, 52, 676, 14463
Offset: 0
Examples
For n=3, the a(3)=8 subsets are ... oo. .oo ... ... ooo .o. o.o ... oo. .oo oo. .oo o.o o.o ... ... ... ... oo. .oo ooo .o. o.o For n=4, the a(4)=52 subsets include .o.. .o.. oooo oo.o ..oo ooo. o.o. ...o o..o oo.. o.oo o.o. .o.. o... oo.o ..oo .... o.o. ...o ..o. .ooo ..oo o.o. ooo.
Crossrefs
Cf. A297664.
Programs
-
Mathematica
d[p1_,p2_]:=(p1-p2).(p1-p2) dists[L_,pt_]:=Sort[Map[d[pt,#]&,Complement[L,{pt}]]] check[L_,pt_]:=(L =={})||((Length[L]>= 3)&&(dists[L,pt][[1]]==dists[L,pt][[2]])&&(dists[L,pt][[2]]< dists[L,pt][[3]])) check[L_]:=Apply[And,Map[check[L, #]&,L]] Table[Length[Select[Tuples[Tuples[{0,1},n],n],check[Position[#, 1]]&]],{n,0,5}]
Extensions
a(6) from Michael S. Branicky, Jan 01 2025