cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383121 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(n*k,k).

Original entry on oeis.org

1, 0, 3, 47, 1093, 33029, 1236781, 55325416, 2879987209, 171061709417, 11418368571721, 846230146390001, 68949300160035373, 6126085419697733567, 589470974371501065845, 61068847238080533844679, 6777270943578364524130321, 802138434294752321142680145
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n k, k], {k, 0, n}], {n, 0, 17}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(n*k,k)); \\ Michel Marcus, Apr 17 2025

Formula

a(n) = [x^n] ((1 + x)^n - x)^n.
a(n) ~ exp(n - exp(-1) - 1/2) * n^n / sqrt(2*Pi*n). - Vaclav Kotesovec, Apr 17 2025

A378410 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,k-1) * binomial(n*k,k) / ((n-1)*k+1).

Original entry on oeis.org

1, 1, 1, 7, 85, 1581, 40006, 1288729, 50578445, 2344950745, 125538581926, 7626452229331, 518557071012696, 39027861427630167, 3221686807607369921, 289464281567009809303, 28124498248184961490621, 2938498159807193630239281, 328556126358414341918608978
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n-1, k-1] * Binomial[n*k, k]/((n-1)*k + 1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ exp(n - 1/2 - 1/exp(1)) * n^(n - 5/2) / sqrt(2*Pi).
Showing 1-2 of 2 results.