cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A378525 Dirichlet inverse of A378542, where A378542 is the sum of divisors d of n such that n/d has an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, -2, -3, -1, -5, 5, -7, 2, -1, 9, -11, 5, -13, 13, 14, 0, -17, 5, -19, 7, 20, 21, -23, -5, -1, 25, 3, 9, -29, -20, -31, 0, 32, 33, 34, -4, -37, 37, 38, -9, -41, -30, -43, 13, 8, 45, -47, -2, -1, 7, 50, 15, -53, -5, 54, -13, 56, 57, -59, -28, -61, 61, 10, 0, 64, -50, -67, 19, 68, -56, -71, -7, -73, 73, 8, 21, 76
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Crossrefs

Cf. A378542.
Cf. also A378526.

Programs

  • PARI
    A378542(n) = sumdiv(n,d,d*!(bigomega(n/d)%2));
    memoA378525 = Map();
    A378525(n) = if(1==n,1,my(v); if(mapisdefined(memoA378525,n,&v), v, v = -sumdiv(n,d,if(dA378542(n/d)*A378525(d),0)); mapput(memoA378525,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378542(n/d) * a(d).

A378548 Sum of divisors d of n such that n/d is odd with an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 11, 12, 13, 14, 16, 16, 17, 20, 19, 20, 22, 22, 23, 24, 26, 26, 30, 28, 29, 32, 31, 32, 34, 34, 36, 40, 37, 38, 40, 40, 41, 44, 43, 44, 53, 46, 47, 48, 50, 52, 52, 52, 53, 60, 56, 56, 58, 58, 59, 64, 61, 62, 73, 64, 66, 68, 67, 68, 70, 72, 71, 80, 73, 74, 83, 76, 78, 80, 79, 80, 91, 82
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Agrees with A378542 on odd n.
Dirichlet convolution of A000027 with A353557.
Dirichlet convolution of A000010 (Euler phi) with A369257.

Crossrefs

Cf. A000010, A000203, A353557, A369257, A378526 (Dirichlet inverse), A378549.
Cf. also A002131, A378542, A378546.

Programs

Formula

a(n) = Sum_{d|n} A353557(n/d)*d.
a(n) = Sum_{d|n} A000010(n/d)*A369257(d).
a(n) = A000203(n) - A378549(n).

A378527 Dirichlet inverse of A378546.

Original entry on oeis.org

1, -2, -3, 0, -5, 6, -7, 0, -1, 10, -11, -1, -13, 14, 14, -1, -17, 2, -19, -1, 20, 22, -23, 2, -1, 26, 3, -1, -29, -28, -31, 2, 32, 34, 34, 3, -37, 38, 38, 2, -41, -40, -43, -1, 8, 46, -47, 3, -1, 2, 50, -1, -53, -6, 54, 2, 56, 58, -59, 8, -61, 62, 10, 0, 64, -64, -67, -1, 68, -68, -71, -6, -73, 74, 8, -1, 76, -76, -79, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Crossrefs

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378546(n/d) * a(d).
a(n) = Sum_{d|n} A055615(d)*A369974(n/d).
a(n) = Sum_{d|n} A023900(d)*A378528(n/d).
Showing 1-3 of 3 results.