cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A378532 Dirichlet convolution of A296075 and A378525.

Original entry on oeis.org

1, 0, 0, -2, 0, -3, 0, -2, -2, -3, 0, -4, 0, -3, -3, -2, 0, -4, 0, -4, -3, -3, 0, -2, -2, -3, -2, -4, 0, -6, 0, -2, -3, -3, -3, -1, 0, -3, -3, -2, 0, -6, 0, -4, -4, -3, 0, -2, -2, -4, -3, -4, 0, -2, -3, -2, -3, -3, 0, 0, 0, -3, -4, -2, -3, -6, 0, -4, -3, -6, 0, 0, 0, -3, -4, -4, -3, -6, 0, -2, -2, -3, 0, 0, -3, -3, -3, -2
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Inverse Möbius transform of A378534.

Crossrefs

Cf. A033879, A296075, A378531 (Dirichlet inverse), A378534 (Möbius transform), A378525, A378542.
Cf. also A378218.

Programs

Formula

a(n) = Sum_{d|n} A296075(d)*A378525(n/d).
a(n) = Sum_{d|n} A378534(d).

A378534 Dirichlet convolution of A033879 and A378525.

Original entry on oeis.org

1, -1, -1, -2, -1, -2, -1, 0, -2, -2, -1, 1, -1, -2, -2, 0, -1, 1, -1, 1, -2, -2, -1, 2, -2, -2, 0, 1, -1, 2, -1, 0, -2, -2, -2, 4, -1, -2, -2, 2, -1, 2, -1, 1, 1, -2, -1, 0, -2, 1, -2, 1, -1, 2, -2, 2, -2, -2, -1, 6, -1, -2, 1, 0, -2, 2, -1, 1, -2, 2, -1, -1, -1, -2, 1, 1, -2, 2, -1, 0, 0, -2, -1, 6, -2, -2, -2, 2, -1, 6
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Möbius transform of A378532.

Crossrefs

Cf. A008683, A033879, A323910, A378532 (inverse Möbius transform), A378533 (Dirichlet inverse), A378542.
Cf. also A378224.

Programs

Formula

a(n) = Sum_{d|n} A033879(d)*A378525(n/d).
a(n) = Sum_{d|n} A008683(d)*A378532(n/d).

A378536 Inverse Möbius transform of A378525.

Original entry on oeis.org

1, -1, -2, -2, -4, 1, -6, 0, -3, 3, -10, 5, -12, 5, 7, 0, -16, 5, -18, 9, 11, 9, -22, 2, -5, 11, 0, 13, -28, -1, -30, 0, 19, 15, 23, 5, -36, 17, 23, 2, -40, -3, -42, 21, 14, 21, -46, 0, -7, 9, 31, 25, -52, 3, 39, 2, 35, 27, -58, -18, -60, 29, 20, 0, 47, -7, -66, 33, 43, -13, -70, -5, -72, 35, 14, 37, 59, -9, -78, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Dirichlet inverse of A378535, which is Möbius transform of A378542, where A378542 is the sum of divisors d of n such that n/d has an even number of prime factors (counted with multiplicity).

Crossrefs

Cf. A378525, A378535 (Dirichlet inverse), A378542.

Programs

Formula

a(n) = Sum_{d|n} A378525(d).

A378542 Sum of divisors d of n such that n/d has an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 5, 5, 7, 7, 10, 10, 11, 11, 17, 13, 15, 16, 21, 17, 23, 19, 27, 22, 23, 23, 35, 26, 27, 30, 37, 29, 40, 31, 42, 34, 35, 36, 56, 37, 39, 40, 55, 41, 54, 43, 57, 53, 47, 47, 73, 50, 57, 52, 67, 53, 70, 56, 75, 58, 59, 59, 96, 61, 63, 73, 85, 66, 82, 67, 87, 70, 84, 71, 115, 73, 75, 83, 97, 78, 96, 79, 115, 91
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Agrees with A378548 on odd n.
Dirichlet convolution of A000027 with A065043.
Dirichlet convolution of A000010 (Euler phi) with A038548.

Crossrefs

Cf. A000010, A000027, A000203, A001222, A038548, A065043, A378525 (Dirichlet inverse), A378543.
Cf. also A378546, A378548.

Programs

  • PARI
    A378542(n) = sumdiv(n,d,d*!(bigomega(n/d)%2));

Formula

a(n) = Sum_{d|n} A065043(n/d)*d.
a(n) = Sum_{d|n} A000010(n/d)*A038548(d).
a(n) = A000203(n) - A378543(n).

A378526 Dirichlet inverse of A378548, where A378548 is the sum of divisors d of n such that n/d is odd with an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, -2, -3, 0, -5, 6, -7, 0, -1, 10, -11, 0, -13, 14, 14, 0, -17, 2, -19, 0, 20, 22, -23, 0, -1, 26, 3, 0, -29, -28, -31, 0, 32, 34, 34, 0, -37, 38, 38, 0, -41, -40, -43, 0, 8, 46, -47, 0, -1, 2, 50, 0, -53, -6, 54, 0, 56, 58, -59, 0, -61, 62, 10, 0, 64, -64, -67, 0, 68, -68, -71, 0, -73, 74, 8, 0, 76, -76, -79, 0, 0, 82
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Agrees with A378525 on all odd n, and also on some even n: 2, 16, 32, 64, 96, 128, 160, 192, ...

Crossrefs

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378548(n/d) * a(d).
a(n) = Sum_{d|n} A023900(d)*A369454(n/d).
a(n) = Sum_{d|n} A055615(d)*A358777(n/d).

A378527 Dirichlet inverse of A378546.

Original entry on oeis.org

1, -2, -3, 0, -5, 6, -7, 0, -1, 10, -11, -1, -13, 14, 14, -1, -17, 2, -19, -1, 20, 22, -23, 2, -1, 26, 3, -1, -29, -28, -31, 2, 32, 34, 34, 3, -37, 38, 38, 2, -41, -40, -43, -1, 8, 46, -47, 3, -1, 2, 50, -1, -53, -6, 54, 2, 56, 58, -59, 8, -61, 62, 10, 0, 64, -64, -67, -1, 68, -68, -71, -6, -73, 74, 8, -1, 76, -76, -79, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Crossrefs

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378546(n/d) * a(d).
a(n) = Sum_{d|n} A055615(d)*A369974(n/d).
a(n) = Sum_{d|n} A023900(d)*A378528(n/d).
Showing 1-6 of 6 results.