cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A378525 Dirichlet inverse of A378542, where A378542 is the sum of divisors d of n such that n/d has an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, -2, -3, -1, -5, 5, -7, 2, -1, 9, -11, 5, -13, 13, 14, 0, -17, 5, -19, 7, 20, 21, -23, -5, -1, 25, 3, 9, -29, -20, -31, 0, 32, 33, 34, -4, -37, 37, 38, -9, -41, -30, -43, 13, 8, 45, -47, -2, -1, 7, 50, 15, -53, -5, 54, -13, 56, 57, -59, -28, -61, 61, 10, 0, 64, -50, -67, 19, 68, -56, -71, -7, -73, 73, 8, 21, 76
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Crossrefs

Cf. A378542.
Cf. also A378526.

Programs

  • PARI
    A378542(n) = sumdiv(n,d,d*!(bigomega(n/d)%2));
    memoA378525 = Map();
    A378525(n) = if(1==n,1,my(v); if(mapisdefined(memoA378525,n,&v), v, v = -sumdiv(n,d,if(dA378542(n/d)*A378525(d),0)); mapput(memoA378525,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378542(n/d) * a(d).

A378531 Dirichlet convolution of A378432 and A378542.

Original entry on oeis.org

1, 0, 0, 2, 0, 3, 0, 2, 2, 3, 0, 4, 0, 3, 3, 6, 0, 4, 0, 4, 3, 3, 0, 14, 2, 3, 2, 4, 0, 6, 0, 10, 3, 3, 3, 18, 0, 3, 3, 14, 0, 6, 0, 4, 4, 3, 0, 30, 2, 4, 3, 4, 0, 14, 3, 14, 3, 3, 0, 30, 0, 3, 4, 22, 3, 6, 0, 4, 3, 6, 0, 48, 0, 3, 4, 4, 3, 6, 0, 30, 6, 3, 0, 30, 3, 3, 3, 14, 0, 30, 3, 4, 3, 3, 3, 74, 0, 4, 4, 18
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Möbius transform of A378533.

Crossrefs

Cf. A008683, A378532 (Dirichlet inverse), A378432, A378533 (inverse Möbius transform), A378542.
Cf. also A345182.

Programs

Formula

a(n) = Sum_{d|n} A378432(d)*A378542(n/d).
a(n) = Sum_{d|n} A008683(d)*A378533(n/d).

A378533 Dirichlet convolution of A323910 and A378542.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 5, 3, 4, 1, 10, 1, 4, 4, 11, 1, 10, 1, 10, 4, 4, 1, 26, 3, 4, 5, 10, 1, 16, 1, 21, 4, 4, 4, 34, 1, 4, 4, 26, 1, 16, 1, 10, 10, 4, 1, 62, 3, 10, 4, 10, 1, 26, 4, 26, 4, 4, 1, 56, 1, 4, 10, 43, 4, 16, 1, 10, 4, 16, 1, 98, 1, 4, 10, 10, 4, 16, 1, 62, 11, 4, 1, 56, 4, 4, 4, 26, 1, 56, 4, 10, 4, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Inverse Möbius transform of A378531.

Crossrefs

Cf. A378531 (Möbius transform), A378534 (Dirichlet inverse).
Cf. also A378223.

Programs

Formula

a(n) = Sum_{d|n} A323910(d)*A378542(n/d).
a(n) = Sum_{d|n} A378531(d).

A378535 Möbius transform of A378542, where A378542 is the sum of divisors d of n such that n/d has an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 3, 4, 3, 6, 5, 7, 5, 10, 7, 12, 7, 9, 11, 16, 9, 18, 13, 13, 11, 22, 13, 21, 13, 20, 19, 28, 15, 30, 21, 21, 17, 25, 23, 36, 19, 25, 23, 40, 21, 42, 31, 30, 23, 46, 27, 43, 25, 33, 37, 52, 27, 41, 33, 37, 29, 58, 33, 60, 31, 44, 43, 49, 33, 66, 49, 45, 35, 70, 41, 72, 37, 46, 55, 61, 39, 78, 49, 61, 41, 82
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Crossrefs

Cf. A001222, A008683, A378535, A378536 (Dirichlet inverse).

Programs

Formula

a(n) = Sum_{d|n} A008683(d)*A378542(n/d).

A378548 Sum of divisors d of n such that n/d is odd with an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 11, 12, 13, 14, 16, 16, 17, 20, 19, 20, 22, 22, 23, 24, 26, 26, 30, 28, 29, 32, 31, 32, 34, 34, 36, 40, 37, 38, 40, 40, 41, 44, 43, 44, 53, 46, 47, 48, 50, 52, 52, 52, 53, 60, 56, 56, 58, 58, 59, 64, 61, 62, 73, 64, 66, 68, 67, 68, 70, 72, 71, 80, 73, 74, 83, 76, 78, 80, 79, 80, 91, 82
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Agrees with A378542 on odd n.
Dirichlet convolution of A000027 with A353557.
Dirichlet convolution of A000010 (Euler phi) with A369257.

Crossrefs

Cf. A000010, A000203, A353557, A369257, A378526 (Dirichlet inverse), A378549.
Cf. also A002131, A378542, A378546.

Programs

Formula

a(n) = Sum_{d|n} A353557(n/d)*d.
a(n) = Sum_{d|n} A000010(n/d)*A369257(d).
a(n) = A000203(n) - A378549(n).

A378532 Dirichlet convolution of A296075 and A378525.

Original entry on oeis.org

1, 0, 0, -2, 0, -3, 0, -2, -2, -3, 0, -4, 0, -3, -3, -2, 0, -4, 0, -4, -3, -3, 0, -2, -2, -3, -2, -4, 0, -6, 0, -2, -3, -3, -3, -1, 0, -3, -3, -2, 0, -6, 0, -4, -4, -3, 0, -2, -2, -4, -3, -4, 0, -2, -3, -2, -3, -3, 0, 0, 0, -3, -4, -2, -3, -6, 0, -4, -3, -6, 0, 0, 0, -3, -4, -4, -3, -6, 0, -2, -2, -3, 0, 0, -3, -3, -3, -2
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Inverse Möbius transform of A378534.

Crossrefs

Cf. A033879, A296075, A378531 (Dirichlet inverse), A378534 (Möbius transform), A378525, A378542.
Cf. also A378218.

Programs

Formula

a(n) = Sum_{d|n} A296075(d)*A378525(n/d).
a(n) = Sum_{d|n} A378534(d).

A378534 Dirichlet convolution of A033879 and A378525.

Original entry on oeis.org

1, -1, -1, -2, -1, -2, -1, 0, -2, -2, -1, 1, -1, -2, -2, 0, -1, 1, -1, 1, -2, -2, -1, 2, -2, -2, 0, 1, -1, 2, -1, 0, -2, -2, -2, 4, -1, -2, -2, 2, -1, 2, -1, 1, 1, -2, -1, 0, -2, 1, -2, 1, -1, 2, -2, 2, -2, -2, -1, 6, -1, -2, 1, 0, -2, 2, -1, 1, -2, 2, -1, -1, -1, -2, 1, 1, -2, 2, -1, 0, 0, -2, -1, 6, -2, -2, -2, 2, -1, 6
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Möbius transform of A378532.

Crossrefs

Cf. A008683, A033879, A323910, A378532 (inverse Möbius transform), A378533 (Dirichlet inverse), A378542.
Cf. also A378224.

Programs

Formula

a(n) = Sum_{d|n} A033879(d)*A378525(n/d).
a(n) = Sum_{d|n} A008683(d)*A378532(n/d).

A378543 Sum of divisors d of n such that n/d has an odd number of prime factors (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 5, 3, 7, 1, 11, 1, 9, 8, 10, 1, 16, 1, 15, 10, 13, 1, 25, 5, 15, 10, 19, 1, 32, 1, 21, 14, 19, 12, 35, 1, 21, 16, 35, 1, 42, 1, 27, 25, 25, 1, 51, 7, 36, 20, 31, 1, 50, 16, 45, 22, 31, 1, 72, 1, 33, 31, 42, 18, 62, 1, 39, 26, 60, 1, 80, 1, 39, 41, 43, 18, 72, 1, 71, 30, 43, 1, 94, 22, 45, 32, 65
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Agrees with A378549 on odd n.
Dirichlet convolution of A000027 with A066829.
Dirichlet convolution of A000010 (Euler phi) with A056924.

Crossrefs

Programs

  • PARI
    A378543(n) = sumdiv(n,d,d*!!(bigomega(n/d)%2));

Formula

a(n) = Sum_{d|n} A066829(n/d)*d.
a(n) = Sum_{d|n} A000010(n/d)*A056924(d).
a(n) = A000203(n) - A378543(n).

A378536 Inverse Möbius transform of A378525.

Original entry on oeis.org

1, -1, -2, -2, -4, 1, -6, 0, -3, 3, -10, 5, -12, 5, 7, 0, -16, 5, -18, 9, 11, 9, -22, 2, -5, 11, 0, 13, -28, -1, -30, 0, 19, 15, 23, 5, -36, 17, 23, 2, -40, -3, -42, 21, 14, 21, -46, 0, -7, 9, 31, 25, -52, 3, 39, 2, 35, 27, -58, -18, -60, 29, 20, 0, 47, -7, -66, 33, 43, -13, -70, -5, -72, 35, 14, 37, 59, -9, -78, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Dirichlet inverse of A378535, which is Möbius transform of A378542, where A378542 is the sum of divisors d of n such that n/d has an even number of prime factors (counted with multiplicity).

Crossrefs

Cf. A378525, A378535 (Dirichlet inverse), A378542.

Programs

Formula

a(n) = Sum_{d|n} A378525(d).
Showing 1-9 of 9 results.