cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A378527 Dirichlet inverse of A378546.

Original entry on oeis.org

1, -2, -3, 0, -5, 6, -7, 0, -1, 10, -11, -1, -13, 14, 14, -1, -17, 2, -19, -1, 20, 22, -23, 2, -1, 26, 3, -1, -29, -28, -31, 2, 32, 34, 34, 3, -37, 38, 38, 2, -41, -40, -43, -1, 8, 46, -47, 3, -1, 2, 50, -1, -53, -6, 54, 2, 56, 58, -59, 8, -61, 62, 10, 0, 64, -64, -67, -1, 68, -68, -71, -6, -73, 74, 8, -1, 76, -76, -79, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Crossrefs

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378546(n/d) * a(d).
a(n) = Sum_{d|n} A055615(d)*A369974(n/d).
a(n) = Sum_{d|n} A023900(d)*A378528(n/d).

A378542 Sum of divisors d of n such that n/d has an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 5, 5, 7, 7, 10, 10, 11, 11, 17, 13, 15, 16, 21, 17, 23, 19, 27, 22, 23, 23, 35, 26, 27, 30, 37, 29, 40, 31, 42, 34, 35, 36, 56, 37, 39, 40, 55, 41, 54, 43, 57, 53, 47, 47, 73, 50, 57, 52, 67, 53, 70, 56, 75, 58, 59, 59, 96, 61, 63, 73, 85, 66, 82, 67, 87, 70, 84, 71, 115, 73, 75, 83, 97, 78, 96, 79, 115, 91
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Agrees with A378548 on odd n.
Dirichlet convolution of A000027 with A065043.
Dirichlet convolution of A000010 (Euler phi) with A038548.

Crossrefs

Cf. A000010, A000027, A000203, A001222, A038548, A065043, A378525 (Dirichlet inverse), A378543.
Cf. also A378546, A378548.

Programs

  • PARI
    A378542(n) = sumdiv(n,d,d*!(bigomega(n/d)%2));

Formula

a(n) = Sum_{d|n} A065043(n/d)*d.
a(n) = Sum_{d|n} A000010(n/d)*A038548(d).
a(n) = A000203(n) - A378543(n).

A378444 a(n) is the number of divisors d of n such that A083345(d) is even, where A083345(n) is the numerator of Sum(e/p: n=Product(p^e)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 4, 1, 1, 3, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 3, 2, 2, 2, 1, 3, 3, 1, 1, 4, 2, 1, 2, 2, 1, 3, 2, 2, 2, 1, 2, 3, 1, 2, 3, 3, 1, 2, 1, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 27 2024

Keywords

Comments

Number of terms of A369002 that divide n.

Crossrefs

Inverse Möbius transform of A369001.
Cf. also A369257.

Programs

Formula

a(n) = Sum_{d|n} A369001(d).
a(n) = A000005(n) - A378445(n).
a(n) = Sum_{d|n} A023900(d)*A378546(n/d).
a(n) = ceiling(A174273(n)/2). [Conjectured] - Antti Karttunen, May 14 2025

A378547 a(n) is the sum of the divisors d of n for which A083345(n/d) is odd, where A083345(n) is the numerator of Sum(e/p: n=Product(p^e)).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 3, 8, 1, 15, 1, 10, 8, 14, 1, 19, 1, 21, 10, 14, 1, 34, 5, 16, 10, 27, 1, 40, 1, 29, 14, 20, 12, 48, 1, 22, 16, 48, 1, 52, 1, 39, 25, 26, 1, 69, 7, 41, 20, 45, 1, 60, 16, 62, 22, 32, 1, 96, 1, 34, 31, 59, 18, 76, 1, 57, 26, 72, 1, 109, 1, 40, 41, 63, 18, 88, 1, 97, 30, 44, 1, 126, 22, 46, 32
Offset: 1

Views

Author

Antti Karttunen, Nov 30 2024

Keywords

Comments

Dirichlet convolution of A000027 with A377874.
Dirichlet convolution of A000010 (Euler phi) with A378445.

Crossrefs

Programs

  • PARI
    A377874(n) = { my(f=factor(n)); (numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1])))%2); };
    A378547(n) = sumdiv(n,d,d*A377874(n/d));

Formula

a(n) = Sum_{d|n} A377874(n/d)*d.
a(n) = Sum_{d|n} A000010(n/d)*A378445(d).
a(n) = A000203(n) - A378546(n).

A378548 Sum of divisors d of n such that n/d is odd with an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 11, 12, 13, 14, 16, 16, 17, 20, 19, 20, 22, 22, 23, 24, 26, 26, 30, 28, 29, 32, 31, 32, 34, 34, 36, 40, 37, 38, 40, 40, 41, 44, 43, 44, 53, 46, 47, 48, 50, 52, 52, 52, 53, 60, 56, 56, 58, 58, 59, 64, 61, 62, 73, 64, 66, 68, 67, 68, 70, 72, 71, 80, 73, 74, 83, 76, 78, 80, 79, 80, 91, 82
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Agrees with A378542 on odd n.
Dirichlet convolution of A000027 with A353557.
Dirichlet convolution of A000010 (Euler phi) with A369257.

Crossrefs

Cf. A000010, A000203, A353557, A369257, A378526 (Dirichlet inverse), A378549.
Cf. also A002131, A378542, A378546.

Programs

Formula

a(n) = Sum_{d|n} A353557(n/d)*d.
a(n) = Sum_{d|n} A000010(n/d)*A369257(d).
a(n) = A000203(n) - A378549(n).
Showing 1-5 of 5 results.