A378569 a(n) = 3*n*(n+1) + 7.
7, 13, 25, 43, 67, 97, 133, 175, 223, 277, 337, 403, 475, 553, 637, 727, 823, 925, 1033, 1147, 1267, 1393, 1525, 1663, 1807, 1957, 2113, 2275, 2443, 2617, 2797, 2983, 3175, 3373, 3577, 3787, 4003, 4225, 4453, 4687, 4927, 5173, 5425, 5683, 5947, 6217, 6493, 6775, 7063, 7357, 7657, 7963, 8275, 8593, 8917, 9247, 9583, 9925
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Paul Bourgarel, Journal de mathématiques élémentaires, (1884), p. 111.
- Antreas Hatzipolakis, A sequence, mail to the SeqFan list / google group, Jan. 31, 2025.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3,-3,1},{7, 13, 25 }, 58] (* James C. McMahon, Feb 08 2025 *)
-
PARI
A378569(n)=3*n*(n+1)+7; apply(A378569, [0..55])
Formula
a(n) = A102724(n+1) for 1 <= n <= 7, where A102724 = partial sums of A001043(n) = prime(n)+prime(n+1).
From Vincenzo Librandi, Feb 06 2025: (Start)
a(n) = 2* a(n-1) - a(n-2) + 6.
G.f.: (7-8x+7x^2)/ (1-3x+3x^2-x^3). (End)
E.g.f.: exp(x)*(7 + 6*x + 3*x^2). - Stefano Spezia, Feb 06 2025
Comments