cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378578 G.f. A(x) equals the series obtained by removing all factors of 3 from the coefficients in 1 + x*A(x)^3.

Original entry on oeis.org

1, 1, 1, 2, 13, 19, 52, 412, 73, 1405, 11735, 20000, 7300, 388606, 664316, 2325118, 20832709, 11815463, 95438089, 861817318, 1495813613, 5231996647, 47291366710, 3025568936, 199838851432, 1828302724054, 3320026962314, 439614522008, 73390614310810, 131344935434920, 55179693272894, 3321671735661494
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2025

Keywords

Comments

Conjecture: a(n) == binomial(3*n,n)/(2*n+1) (mod 2) for n >= 0.

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 13*x^4 + 19*x^5 + 52*x^6 + 412*x^7 + 73*x^8 + 1405*x^9 + 11735*x^10 + 20000*x^11 + 7300*x^12 + ...
The expansion of A(x)^3 begins
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 57*x^4 + 156*x^5 + 412*x^6 + 1971*x^7 + 4215*x^8 + 11735*x^9 + 60000*x^10 + 197100*x^11 + ...
where g.f. A(x) is obtained by removing all factors of 3 from the coefficients in 1 + x*A(x)^3.
SPECIFIC VALUES.
A(t) = 8/5 at t = 0.257842038645833456558...
A(t) = 3/2 at t = 0.24869526467110689667648213094860932113462559982219...
A(t) = 4/3 at t = 0.21321674572378383093755902318049913517774115880785...
A(t) = 5/4 at t = 0.18151790234803008203317827057063199289923020437324...
A(t) = 6/5 at t = 0.15638236848650043639095127985605468995430265567872...
A(1/4) = 1.5104498750225954401497052152244291483533940069402...
A(1/5) = 1.2948177731384287040434619555644894329636242990640...
A(1/6) = 1.2192544950152148905144159115908573870687883121699...
A(1/8) = 1.1487089332444818621810139499703458742589412625833...
A(1/9) = 1.1286969902151862545955480786537992451685724113531...
PARITY OF TERMS.
The run lengths of the odd terms, which starts
[3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, ...],
appears to equal A282162 (offset 1), the first differences of the upper Wythoff sequence (A001950).
The run lengths of the even terms, which starts
[1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 85, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 170, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 341, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 85, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 682, 1, 2, 5, 1, 10, ...],
appears to equal A085358, the runs of zeros in binomial(3*n,n)/(2*n+1) (mod 2), the records of which are given by A000975 and occur at Fibonacci numbers.
		

Crossrefs

Programs

  • PARI
    N = 30; A=vector(N+1); A[1]=1; \\ N = number of terms
    {a(n) = if(n==0,1, A[n+1] = Vec(1 + x*Ser(A)^3)[n+1]; A[n+1] = A[n+1] / 3^valuation(A[n+1], 3) )}
    for(n=0, N, print1(a(n), ", "))

Formula

a(n) = A038502( Sum_{k=0..n-1} a(k) * Sum_{j=0..n-1-k} a(j)*a(n-1-k-j) ) for n > 0 with a(0) = 1, where A038502(m) = m/3^A007949(m) and A007949(m) = 3-adic valuation of m.