cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378606 Dirichlet convolution of A046692 and A003961, where A046692 is the Dirichlet inverse of sigma, and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

Original entry on oeis.org

1, 0, 1, 2, 1, 0, 3, 6, 8, 0, 1, 2, 3, 0, 1, 18, 1, 0, 3, 2, 3, 0, 5, 6, 12, 0, 40, 6, 1, 0, 5, 54, 1, 0, 3, 16, 3, 0, 3, 6, 1, 0, 3, 2, 8, 0, 5, 18, 40, 0, 1, 6, 5, 0, 1, 18, 3, 0, 1, 2, 5, 0, 24, 162, 3, 0, 3, 2, 5, 0, 1, 48, 5, 0, 12, 6, 3, 0, 3, 18, 200, 0, 5, 6, 1, 0, 1, 6, 7, 0, 9, 10, 5, 0, 3, 54, 3, 0, 8, 24
Offset: 1

Views

Author

Antti Karttunen, Dec 11 2024

Keywords

Crossrefs

Cf. A003961, A008683, A016825 (positions of 0's), A046692, A151800, A349387 (inverse Möbius transform), A378607 (Dirichlet inverse).

Programs

  • Mathematica
    f[p_, e_] := Module[{q = NextPrime[p]}, If[e == 1, q - p - 1, q^e - (p + 1)*q^(e - 1) + p*q^(e - 2)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 11 2024 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
    A378606(n) = sumdiv(n,d,A046692(d)*A003961(n/d));

Formula

a(n) = Sum_{d|n} A046692(d)*A003961(n/d).
a(n) = Sum_{d|n} A008683(d)*A349387(n/d).
Multiplicative with a(p^e) = q(p)^e - (p+1) * q(p)^(e-1) + p * q(p)^(e-2) if e >= 2, and q(p) - p - 1 if e = 1, where q(p) = A151800(p) is the prime next to p. - Amiram Eldar, Dec 11 2024