cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369012 Expansion of (1/x) * Series_Reversion( x * (1-x/(1-x))^3 ).

Original entry on oeis.org

1, 3, 18, 133, 1095, 9636, 88718, 843993, 8230671, 81841987, 826641816, 8457710604, 87472494564, 912995025912, 9604763388534, 101736967518497, 1084125909550959, 11614159795566489, 125011746270524690, 1351312626871871661, 14662950224977228047
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x/(1-x))^3)/x)
    
  • PARI
    a(n, s=1, t=3, u=-3) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(n-1,n-k).
D-finite with recurrence 96*(3*n+2)*(3*n+1)*(n+1)*a(n) +4*(-4121*n^3 +1922*n^2 -1273*n+124)*a(n-1) +4*(20588*n^3 -76648*n^2 +98677*n -43586)*a(n-2) +(-90073*n^3 +671565*n^2 -1665278*n +1375320)*a(n-3) +210*(n-4)*(3*n-7) *(3*n-8)*a(n-4)=0. - R. J. Mathar, Jan 25 2024
From Seiichi Manyama, Dec 02 2024: (Start)
G.f.: exp( Sum_{k>=1} A378612(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x/(1 - x))^(3*(n+1)).
G.f.: B(x)^3 where B(x) is the g.f. of A243659.
a(n) = 3 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(3*n+k+3,n)/(3*n+k+3). (End)

A378613 a(n) = Sum_{k=0..n} binomial(4*n+k-1,k) * binomial(n-1,n-k).

Original entry on oeis.org

1, 4, 44, 532, 6748, 88024, 1169444, 15738328, 213842716, 2927097712, 40302226944, 557565134196, 7744326799684, 107925260553088, 1508352084699224, 21132667178858512, 296716493251706652, 4174006026061733232, 58816013334014598032, 830025065117154066064, 11729345524163083673648
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+k-1, k)*binomial(n-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x))^(4*n).
a(n) = (1/8)^n * [x^(4*n)] 4/(1 - x/(1 - x))^n for n > 0.

A378668 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^2/(1 - x*A(x)^2) )^2.

Original entry on oeis.org

1, 2, 13, 112, 1104, 11778, 132374, 1543740, 18505996, 226632616, 2823110349, 35659080952, 455652487060, 5879489288828, 76502741016012, 1002670573618324, 13224761472453756, 175404372357915096, 2338003752387818372, 31302169754776944512, 420760252068869028028
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, 2^k*(-1)^(n-k)*binomial(n, k)*binomial(4*n+k+2, n)/(4*n+k+2));
    
  • PARI
    a(n, r=2, s=1, t=5, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: exp( 1/2 * Sum_{k>=1} A378613(k) * x^k/k ).
G.f.: B(x)^2 where B(x) is the g.f. of A243667.
a(n) = 2 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(4*n+k+2,n)/(4*n+k+2).
a(n) = 2 * Sum_{k=0..n} binomial(4*n+k+2,k) * binomial(n-1,n-k)/(4*n+k+2).
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(5/2)/(1 - x*A(x)^2) )^2.

A378669 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^(4/3)/(1 - x*A(x)^(4/3)) )^3.

Original entry on oeis.org

1, 3, 21, 187, 1878, 20277, 229806, 2696523, 32478204, 399230972, 4988220669, 63165060093, 808828667104, 10455471983550, 136255868388684, 1788233397919211, 23614059664575324, 313531617379965156, 4183068478829324388, 56052027108881747724, 754020313029799707018
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n, 2^k*(-1)^(n-k)*binomial(n, k)*binomial(4*n+k+3, n)/(4*n+k+3));
    
  • PARI
    a(n, r=3, s=1, t=5, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: exp( 3/4 * Sum_{k>=1} A378613(k) * x^k/k ).
G.f.: B(x)^3 where B(x) is the g.f. of A243667.
a(n) = 3 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(4*n+k+3,n)/(4*n+k+3).
a(n) = 3 * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(n-1,n-k)/(4*n+k+3).
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(5/3)/(1 - x*A(x)^(4/3)) )^3.
Showing 1-4 of 4 results.