cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378672 Numbers of uniquely embeddable trees on n vertices.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 19, 31, 57, 95, 161, 262, 435, 683, 1081, 1665, 2545, 3800, 5658, 8232, 11935, 17012, 24074, 33606, 46698, 63994, 87281, 117797, 158121, 210240, 278389, 365267, 477416, 619278, 799962, 1026370, 1312419, 1667131, 2111086
Offset: 1

Views

Author

Eric W. Weisstein, Dec 03 2024

Keywords

Crossrefs

Cf. A378673 (not uniquely embeddable trees).
Cf. A372853 (uniquely embeddable planar connected graphs).
Cf. A000055 (trees), A003238.

Programs

  • PARI
    \\ G(n) is A003238 as g.f.
    G(n) = {my(v=vector(n)); v[1]=1; for(i=2, n, v[i]=sumdiv(i-1, d, v[d])); x*Ser(v)}
    seq(n) = {my(g=G(n-1)); Vec(x + ((1 - x)*g^2 + (1 + x)*subst(g,x,x^2))/2 + x*(g^3 - 3*g*subst(g,x,x^2) + 2*subst(g,x,x^3))/6)} \\ Andrew Howroyd, Jun 08 2025

Formula

a(n) = A000055(n) - A378673(n).
G.f.: x + ((1 - x)*g(x)^2 + (1 + x)*g(x^2))/2 + x*(g(x)^3 - 3*g(x)*g(x^2) + 2*g(x^3))/6, where g(x) is the g.f. of A003238. - Andrew Howroyd, Jun 08 2025

Extensions

a(13) onwards from Andrew Howroyd, Jun 08 2025