A378728 The total number of fires in a rooted undirected infinite 5-ary tree with a self-loop at the root, when the chip-firing process starts with (5^n-1)/4 chips at the root.
0, 1, 12, 98, 684, 4395, 26856, 158692, 915528, 5187989, 28991700, 160217286, 877380372, 4768371583, 25749206544, 138282775880, 739097595216, 3933906555177, 20861625671388, 110268592834474, 581145286560060, 3054738044738771, 16018748283386232, 83819031715393068
Offset: 1
Links
- Yifan Xie, Table of n, a(n) for n = 1..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 16.
- Wikipedia, Chip-firing game.
- Index entries for linear recurrences with constant coefficients, signature (12,-46,60,-25).
Programs
-
Mathematica
Table[((2 n - 3) 5^n + 2 n + 3)/32, {n, 30}]
Formula
a(n) = ((2*n - 3)*5^n + 2*n + 3)/32.
G.f.: x^2/(1-6*x+5*x^2)^2. - Jinyuan Wang, Jan 24 2025
Comments