cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378756 Dirichlet convolution of A046692 and A005187, where A046692 is the Dirichlet inverse of sigma.

Original entry on oeis.org

1, 0, 0, 0, 2, -2, 3, 0, 3, -6, 7, 0, 9, -8, -6, 0, 14, -6, 15, 0, -5, -16, 18, 0, 4, -20, -2, 0, 24, 14, 25, 0, -12, -30, -15, 0, 33, -32, -18, 0, 37, 12, 38, 0, -12, -38, 41, 0, 14, -8, -30, 0, 48, 4, -33, 0, -30, -50, 53, 0, 55, -52, -27, 0, -38, 26, 63, 0, -33, 32, 66, 0, 69, -68, -6, 0, -38, 38, 73, 0, 7, -76, 78
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Crossrefs

Cf. A005187, A046692, A378757 (Dirichlet inverse).
Cf. also A294898.

Programs

  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
    A378756(n) = sumdiv(n,d,A046692(d)*A005187(n/d));

Formula

a(n) = Sum_{d|n} A046692(d)*A005187(n/d).

A379107 Dirichlet convolution of A033879 and A378990, where A033879 is the deficiency of n, and A378990 is the Dirichlet inverse of the binary weight of n.

Original entry on oeis.org

1, 0, 0, 0, 2, -2, 3, 0, 3, -2, 7, -4, 9, -2, -2, 0, 14, -4, 15, -4, 1, -2, 18, -8, 12, -2, 4, -4, 24, -10, 25, 0, 2, -2, 7, -8, 33, -2, 0, -8, 37, -12, 38, -4, 2, -2, 41, -16, 29, -8, -2, -4, 48, -14, 13, -8, 0, -2, 53, -20, 55, -2, -1, 0, 20, -20, 63, -4, 3, -16, 66, -16, 69, -2, -6, -4, 24, -24, 73, -16, 24, -2, 78
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Cf. A000120, A033879, A378990, A379106 (Dirichlet inverse).
Cf. also A294898, A378755, A378757.

Programs

Formula

a(n) = Sum_{d|n} A033879(d)*A378990(n/d).
Showing 1-2 of 2 results.