cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378768 Squares of powerful numbers that are not prime powers.

Original entry on oeis.org

1296, 5184, 10000, 11664, 20736, 38416, 40000, 46656, 50625, 82944, 104976, 153664, 160000, 186624, 194481, 234256, 250000, 331776, 419904, 455625, 456976, 614656, 640000, 746496, 810000, 937024, 944784, 1000000, 1185921, 1265625, 1327104, 1336336, 1500625, 1679616
Offset: 1

Views

Author

Michael De Vlieger, Dec 06 2024

Keywords

Comments

Contained in A286708, which is a proper subset of A126706.

Crossrefs

Programs

  • Mathematica
    With[{nn = 2000}, Select[Rest@ Union[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}] ], Not@*PrimePowerQ]^2]
  • Python
    from math import isqrt
    from sympy import integer_nthroot, primepi, mobius
    def A378768(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2, 3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x, 3)[0])-l
            return c+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length()))
        return bisection(f, n, n)**2 # Chai Wah Wu, Dec 08 2024

Formula

a(n) = A286708(n)^2.
Intersection of A000290 and A286708.
Intersection of A000290 and A372695.
Sum_{n>=1} 1/a(n) = zeta(4)*zeta(6)/zeta(12) - Sum_{p prime} (1/(p^4-p^2)) - 1 = 0.0013772572536044025109... . - Amiram Eldar, Dec 10 2024