A378768 Squares of powerful numbers that are not prime powers.
1296, 5184, 10000, 11664, 20736, 38416, 40000, 46656, 50625, 82944, 104976, 153664, 160000, 186624, 194481, 234256, 250000, 331776, 419904, 455625, 456976, 614656, 640000, 746496, 810000, 937024, 944784, 1000000, 1185921, 1265625, 1327104, 1336336, 1500625, 1679616
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{nn = 2000}, Select[Rest@ Union[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}] ], Not@*PrimePowerQ]^2]
-
Python
from math import isqrt from sympy import integer_nthroot, primepi, mobius def A378768(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f, kmin=0, kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, l = n+x, 0 j = isqrt(x) while j>1: k2 = integer_nthroot(x//j**2, 3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) c -= squarefreepi(integer_nthroot(x, 3)[0])-l return c+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())) return bisection(f, n, n)**2 # Chai Wah Wu, Dec 08 2024
Comments