cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386918 a(n) = 2^n * binomial(4*n,n).

Original entry on oeis.org

1, 8, 112, 1760, 29120, 496128, 8614144, 151557120, 2692684800, 48201359360, 868004380672, 15706806542336, 285362317180928, 5202031080243200, 95104728494899200, 1743063914667048960, 32016101348447354880, 589188508080622534656, 10861173739509105295360
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [2^n * Binomial(4*n,n): n in [0..26]]; // Vincenzo Librandi, Aug 11 2025
  • Mathematica
    Table[2^n*Binomial[4*n,n],{n,0,30}] (* Vincenzo Librandi, Aug 11 2025 *)
  • PARI
    a(n) = 2^n*binomial(4*n, n);
    

Formula

a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(4*n-k,n-k).
a(n) = [x^n] (1+x)^(4*n)/(1-x)^(3*n+1).
a(n) = [x^n] 1/(1-2*x)^(3*n+1).
a(n) = [x^n] (1+2*x)^(4*n).

A378805 a(n) = n^2 * 2^n * binomial(4*n, n).

Original entry on oeis.org

0, 8, 448, 15840, 465920, 12403200, 310109184, 7426298880, 172331827200, 3904310108160, 86800438067200, 1900523591622656, 41092173674053632, 879143252561100800, 18640526785000243200, 392189380800086016000, 8196121945202522849280, 170275478835299912515584, 3519020291600950115696640
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 * 2^n * Binomial[4*n, n]; Array[a, 20, 0]
  • PARI
    a(n) = n^2 * 2^n * binomial(4*n, n);

Formula

a(n) = A007758(n) * A005810(n).
a(n) = 2^n * A378803(n).
a(n) = n * A378804(n).
a(n) == 0 (mod 8).
Sum_{n>=1} 1/a(n) = -(3/2)*log((c-1)/(c+1))^2 + (3/4) * arctan(2*sqrt(c^2+2*c)/(c^2+2*c-1))^2 + (3/4) * arctan(2*sqrt(c^2-2*c)/(c^2-2*c-1))^2 = 0.12729750445123620540..., where c = sqrt(1 + (16*sqrt(2/3))*cos(arctan(sqrt(485/27))/3)) (Batir and Sofo, 2013, p. 336, Example 1).
Showing 1-2 of 2 results.