A378775 Prime numbers with monotonically decreasing digits, differing by at most 1.
2, 3, 5, 7, 11, 43, 211, 433, 443, 877, 887, 2111, 2221, 3221, 5443, 8887, 9887, 22111, 33211, 43321, 54443, 65543, 76543, 98887, 99877, 322111, 332221, 443221, 444443, 766543, 888887, 988877, 2221111, 3221111, 3222211, 3222221, 3333221, 4322221, 4433333, 4443221
Offset: 1
Examples
211 is a term since 211 is a prime number, the digits of 211 are monotonically decreasing, and the difference between consecutive digits is at most 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
extend:= proc(x) local d,s,i; d:= ilog10(x); s:= floor(x/10^d); seq(10^(d+1)*i+x, i=s .. min(9,s+1)) end proc: R:= 2,3,5,7: count:= 4: M:= [1,3,7,9]; for d from 2 while count < 100 do M:= map(extend,M): S:= sort(select(isprime,M)); count:= count+nops(S); R:= R,op(S); od: R; # Robert Israel, Feb 09 2025
-
Mathematica
Select[Prime[Range[312218]],ContainsOnly[Drop[IntegerDigits[#],-1]-Rest[IntegerDigits[#]],{0,1}]&] (* James C. McMahon, Dec 21 2024 *)
-
PARI
isok(p) = if (isprime(p), my(d=digits(p), dd = vector(#d-1, k, d[k+1]-d[k])); (#dd==0) || ((vecmin(dd)>=-1) && (vecmax(dd)<=0))); \\ Michel Marcus, Dec 09 2024